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Introduction 
 
Travel demand matrices are crucial inputs to travel demand forecasting and traffic simulation applications.  While 
it might be desirable to estimate these trip tables from survey data, this is not practical for large or complex 
networks due to the large sample sizes that would be required.  Traffic counts, by comparison, are widely 
available and less costly to obtain making it highly desirable to build base year models that are consistent with 
measured counts.  The problem of estimating trip matrices from counts has a long history in the transportation 
literature and a variety of methods are available for estimating the static matrices for a specific time period that 
are common to regional travel forecasting calibration efforts.  While counts are often available for very short time 
intervals, this information is typically not used in travel demand modeling.  However, for traffic simulation, 
dynamic counts are vital and estimation of dynamic trip tables that specify trips by origin, destination, and 
departure interval becomes an important, if not the most important problem in model development.  
Unfortunately, dynamic estimation of trip tables is vastly more complex and dynamic trip table estimation 
methods are best characterized as emergent, rather than proven.  
 
Static Trip Table Estimation 
 
Planning studies have generally relied on static OD tables, containing total trip rates for extended time periods 
such as the AM and PM peaks or various off-peak periods.  Early methods for estimating trip tables from link 
count data were based on simple trip distribution models of the gravity or entropy family and were estimated with 
linearized equations and least squares followed by non-linear least squares (McNeil and Hendrickson, 1985) and 
also by various maximum likelihood search processes (Van Zuylen and Willumsen, 1980). 
 
The fact that answers are generated by these methods may tend to obscure the difficulties involved. For example, 
traffic counts are subject to measurement error, may be totally missing for some crucial locations, and may be 
grossly inconsistent with one another. More than one solution may therefore provide a reasonable fit to the 
observed counts. To eliminate this issue, some methods attempt to remain close to a prior or seed matrix. For 
example, the ME2 program (Willumsen, 1982) maximizes an “entropy” measure that keeps the estimated OD 
flows very close to user-specified target OD flows. 
 
In the late 1980s and in the 1990s, a step forward was taken by the development of trip table estimation methods 
that were consistent with equilibrium traffic assignments.  These have the virtue of seeking consistency with route 
choice behavior in the sense that an assigned matrix will be close to the measured counts.  This is computationally 
much more intensive that the statistically estimated methods but has become practical due to vast improvements 
in computing power.   
 
With respect to trip table estimation and equilibrium assignment, both single path and multiple path methods are 
encountered with the latter arguably quite preferable.  Methods developed by Nielsen (1993, 1998) have been 
found to be very effective in empirical work.  Nielsen’s method has the advantage of treating counts as stochastic 
variables as well as working with any traffic assignment method.  It therefore can be used with stochastic user 
equilibrium assignment as well as with user equilibrium assignment and also with transit assignment procedures.  
Caliper (2007) has extended Nielsen’s method to include multiple user class matrix estimation, to incorporate 
turning counts as well as link counts, to constrain certain cells, and use statistical weights on the input counts.  
This method has been useful in estimating truck trip matrices for different size trucks. Spiess (1990) formulates a 
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gradient-based approach to adjust a starting matrix so that it better reflects observed counts. The method is 
demonstrated using EMME/2 equilibrium assignments with a reasonably good starting solution. 
 
Despite widespread use, some limitations of static O-D matrix estimation should be noted.  First, within a fixed 
time period such as the AM peak period or peak hour, some trips have not been completed or may have started 
prior to the period.  This leads to an inconsistency in accounting for tripmaking since the matrix is assumed to be 
assigned and the trips completed within the time period.  Second, the quality of the estimation depends 
fundamentally upon the quality of the assignment model including its volume delay functions and convergence.  It 
is well known that conventional assignment methods cannot take account of over-saturated conditions.  Third, the 
path flows associated with equilibrium assignment are not unique.  This suggests that the estimated O-D matrices 
are also not unique.  Finally, since link volumes and speeds are dynamic in time, there is necessarily quite a bit of 
aggregation error in static trip table estimation processes. 
 
Dynamic Trip Table Estimation 
 
While static OD matrices may suffice for long-term planning, they do not capture the within-day temporal 
dynamics observed through peaking, queue formation and dissipation and spillbacks. Short-term planning studies 
therefore require dynamic OD tables in order to accurately measure the performance of the traffic network. Such 
tables represent trip departure rates during short time intervals such as 5 or 15 minutes. 
 
Several approaches obtain dynamic OD profiles from one or more static OD tables. However, such methods are 
often not based on real traffic measurements; they use ad hoc, heuristic rules that are difficult to generalize 
beyond the examples used to derive them. For example, Boyles et al. (2006) generate a dynamic OD profile to 
match the total demand contained in a set of static tables. OD profiles generated by such methods do not attempt 
to match real-world data, need not reflect true traffic dynamics, and may even be unrealistic and counter-intuitive. 
 
The widespread deployment of traffic surveillance sensors has made available a rich dataset of time-varying 
traffic measurements. Since these data are collected and archived continuously and automatically, they represent 
recent network conditions and contain useful indirect information about the underlying dynamic OD demand 
patterns. A logical approach is therefore to divide the analysis period into many short departure time intervals 
consistent with the data measurement intervals, and estimate an OD matrix for each interval so as to replicate the 
time-varying data.. 
 
Let the analysis period be divided into H departure time intervals, Hh ,...,2,1= . Let the OD matrix for time 
interval h be denoted by hx , and the measurements by hy . Traffic measurements may be derived from various 
surveillance technologies. The most common measurements are vehicle counts obtained by loop detectors or 
roadside sensors. Other data include density, loop detector occupancy, speed, probe vehicle travel time and queue 
length. 
 
The general dynamic OD estimation problem can thus be expressed as an optimization problem: 

( )1 2ˆMinimize ( ) ( )
ˆsubject to : ( )

 az x z y y z x x
y Assign x

= − + −

=
    (1) 

where z1(·) is a measure of fit between the measurements y and their modeled counterparts ŷ , the latter obtained 
by running an assignment model such as a dynamic traffic assignment (DTA), mesoscopic or microscopic 
simulator; z2(·) is a measure of fit between the estimated OD flows and their seed values ax . The subscript h has 
been dropped in the above notation for simplicity; the terms x, ax , y and ŷ  are assumed to consist of 
variables/data for all H intervals. Like in the static case, seed flows ax  are required in order to eliminate the 
multiple solutions arising from sparse and inconsistent data coverage. 
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The most popular dynamic OD estimation method uses traffic count data and assignment matrices that are linear 
approximations of the function Assign(x): 

'
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where p
ha  maps OD flows px  (departing in time interval p) to traffic counts hy  in the current interval (Cascetta 

et al., 1993; Ashok, 1996); hv  is an error term. This mapping accounts for the fact that the measurements (such as 
traffic counts) for interval h will likely have contributions from vehicle departures in h as well as prior intervals h-
1, h-2, etc. Thus p’ represents the longest trip length (in terms of time intervals). The assignment matrices may be 
computed from travel time estimates, like in Ashok (1996), or using the output of a mesoscopic or microscopic 
traffic simulator as in Tavana and Mahmassani (2000). 
 
Since the assignment mapping is linear, the solution of the unconstrained least squares OD estimation problem 
using traffic counts is conceptually simple and involves a matrix inversion. However the simultaneous estimation 
of OD flows for all intervals requires the inversion of a massive block-diagonal assignment matrix (formed from 
individual p

ha  matrices) that has been shown to be prohibitively expensive when compared with inverting just 
one assignment matrix (Cascetta and Russo, 1997; Toledo et al., 2003). The general approach thus has been to 
estimate the OD flows one interval at a time, or sequentially (rather than simultaneously), starting from h=1. The 
contribution of previous departure intervals to the current counts are now assumed to be fixed, and subtracted 
from hy : 
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where ˆpx  denotes a prior estimate. The above heuristic assumes that a major share of hx  reach the sensors within 
the same interval. This can be unrealistic on heavily congested networks, especially when the time intervals are 
short. The assignment matrix used in each optimization step can also be inconsistent with the assignment matrix 
obtained by re-assigning the new estimates, requiring potentially costly fixed-point iterations (Cascetta and 
Postorino, 2001). 
 
The assignment matrix has other practical considerations for OD estimation. The addition of non-negativity 
constraints on the OD flow variables results in a more complex least squares problem. In addition, the calculation 
of the assignment matrix itself may not be easy: if the starting solution has very low flows, simulated assignment 
fractions may be unreliable since very few vehicles reach the sensors. If the starting flows are increased in an ad 
hoc way, artificial bottlenecks may be created that prevent vehicles for some OD pairs from reaching sensors. 
This latter aspect can potentially lead to a cycle of ever-increasing OD estimates. Finally, the assignment matrix 
provides an intuitive mapping between OD flows and link counts, but is harder to employ in the context of other 
data such as speeds or travel times. Some studies involving the DYNASMART DTA model have attempted OD 
estimation using section densities instead of counts (Sun and Porwal, 2000). 
 
Gradient-based methods have recently been used to solve the dynamic OD estimation problem. For example, the 
Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1998) has been employed to solve 
the original optimization problem (Equation 1) without imposing linear approximations or resorting to a 
sequential approach. The method provides a practical solution to simultaneously solve for the OD flows of several 
departure time intervals (Balakrishna, 2006; Balakrishna et al, 2007). It is a steepest descent-like method, in the 
sense that a new set of OD flows is obtained by moving along a search direction by a step size. However, the 
search direction is a stochastic approximation of the gradient at the current solution. 
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SPSA is a variant of the standard Finite Difference Stochastic Approximation (FDSA) approach in which the 
gradient is evaluated component-wise. Rather than perturb each variable in turn and re-run a simulation, SPSA 
perturbs all components simultaneously (though independently) and approximates a complete gradient vector 
from just two evaluations of the objective function z(·) irrespective of the number of variables, n. In comparison, 
FDSA requires at least n+1 function evaluations for a single gradient calculation (and 2n if each variable is 
perturbed once on either side). This represents an n-fold improvement in per-iteration efficiency, which is 
significant when each (simulation) assignment run can take several hours. 
 
The efficiency of SPSA has another dimension: the number of iterations to convergence. Spall (1998) has shown 
that SPSA and FDSA converge in a similar number of iterations, which preserves SPSA’s computational 
superiority. SPSA possesses other advantages. The relationship between the data and the variables is directly 
captured through Assign(x), and there are no linear approximations. Further, the assignment method i.e. the 
function Assign(x) may be replaced with any model, of any fidelity. The objective function can also be 
supplemented with any available measurements, and not just counts. 
 
Recent results 
 
Two OD estimation methods (a sequential approach using the assignment matrix, and a non-linear approach 
solved with SPSA) were recently compared on the same dataset from downtown Los Angeles (see Balakrishna et 
al., 2007). The numerical results (sampled in Figure 1) illustrate the benefits of simultaneously estimating all 
departure time intervals at once, and moving away from linear approximations. In the Figure, “Reference” 
corresponds to the older approach, while “Calibrated” denotes the more accurate non-linear approach. “Observed” 
is the real-world measurement. On-going tests on a large example in California involving two classes of vehicles 
(single- and high-occupancy) and 281 zones also indicate the potential of the non-linear approach. 
 

 
Figure 1: Los Angeles Network and Cumulative Sensor Count Profiles 
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Conclusion 
 
This paper motivates the need for estimating origin-destination (OD) trip tables from surveillance data, and 
provides references to popular static and dynamic OD estimation methods. The paper also discusses practical 
issues that significantly impact the accuracy of OD estimation, and presents some recent results from applying 
state-of-the-art estimators on a very large network in California. Despite the theoretical advances, dynamic OD 
estimation remains a challenging exercise owing to sparse sensor coverage, poor data quality and limited real-
world applications. More tests on a wide range of networks is required before any method (existing or new) can 
be reliably adopted in practice. 
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