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Abstract

Integrated choice models have several benefits over sequential models including consistent
solutions, quicker convergence, and more realistic representation of behavior. Static travel choice
models have been integrated using the concept of Supernetworks. However integrated dynamic
transport models are less common. In this paper, activity location, time of participation, du-
ration, and route choice decisions are jointly modeled in a single unified dynamic framework
referred to as Activity-Travel Networks (ATNs). The framework is similar to the concept of
Supernetworks where virtual links are added to augment the network to represent additional
choice dimensions. However, solving such a multi-dimensional dynamic choice problem leads
to combinatorially increasing choice dimensions. Therefore existing algorithms that depend on
path enumeration such as route-swapping algorithm are difficult to implement even for mod-
erately sized networks. We propose a novel extension of Algorithm B (Dial 2006) to dynamic
networks, referred to as Algorithm B-Dynamic, that obviates path enumeration to solve for
equilibrium in ATNs.

1 Introduction.

Urban transport modeling involves several dimensions of individual choice including activity par-
ticipation, location, time of participation, duration, choice of mode, and route. Two critical char-
acteristics in modeling urban transport are: i) each individual makes choices so as to maximize
his/her benefit, however, ii) the choice environment is dynamic and interactive. Often the choice
models are sequentially applied with feedback: initially, the choice environment is assumed fixed
and the individual choices are determined. Subsequently, given the determined individual choices
the choice environment is adjusted. If feedback is involved, the two steps are repeated until the
individual choices and the resulting choice environment are in equilibrium. We also refer to this
state as converged solution. This process of iteratively solving a sequence of models forms the basis
of the four-step urban transportation modeling paradigm.

As opposed to the sequential procedure, several studies have explored integrated choice mod-
els particularly with respect to static transport models. Static travel choice models have been
integrated using the concept of Supernetworks (Sheffi (1985); also referred to as Hypernetworks,
Sheffi and Daganzo (1980)). Integrated choice models have several benefits over sequential models
including consistent solutions, quicker convergence, and more realistic representation of behavior.
However integrated dynamic transport models are less common. Few recent studies in this direction
include Lam and Huang (2003) and Zhang et al. (2005).
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In this paper, activity location, time of participation, duration, and route choice decisions
are jointly modeled in a single unified dynamic framework referred to as Activity-Travel Networks
(ATNs). The proposed simultaneous framework is motivated by the following considerations: (a) to
capture activity demand-supply dynamics in addition to transportation demand-supply dynamics,
and (b) to obtain consistent solutions across all dimensions of choice. The framework is similar to
the concept of Supernetworks where virtual links are added to augment the network to represent
additional choice dimensions. A major hurdle for extending the Supernetwork concept to dynamic
networks considering activities is that the resulting multi-dimensional dynamic choice problem leads
to combinatorially increasing choice dimensions. Therefore existing algorithms that depend on path
enumeration such as route-swapping algorithm are difficult to implement even for moderately sized
networks. We propose a novel extension of Algorithm B (Dial 2006) to dynamic networks, referred
to as Algorithm B-Dynamic, that obviates path enumeration to solve for equilibrium in ATNs.

2 ATN Representation and Motivation

ATNs use a network representation where nodes are activity centers that are joined by travel links.
Activities are represented by arcs that both originate and terminate in the same node (activity
centers). Each activity arc is characterized by a unique activity type and an activity duration. An
activity-travel sequence for an individual can be represented as a ‘path’ that includes both travel
and activity arcs. All individuals at the beginning of the model start from ‘home’ and make a
predefined set of activity stops and reach a fixed final destination (for example, home-shop-work
where shop is an activity stop while work place is the final destination). The location of the final
activity is assumed fixed; activity location is a decision dimension for the intermediate activity
stops. This is not be a restrictive assumption when modeling commute behavior while for other
tours the final destination may be assumed to be home. Time is discrete and the time horizon
is divided into T equal sized, discrete time intervals. Durations of arc-traversal for travel arcs is
always assumed to be a function of flow, while for activity arcs it is assumed fixed. Consistent with
rational behavior assumption, each individual chooses the activity-travel sequence that provides the
maximum generalized utility. DUE is defined as follows: “all individuals from an origin participating
in the same set of activities have equal and maximum utility irrespective of their chosen route,
departure time, activity location, and duration”. In practice, obtaining a zero-tolerance DUE may
require unusually long running times. Further, the DUE may not exist due to discretization of time.
A more reasonable solution is ε-DUE (similar to the ε-UE in Dial (2006)). In ε-DUE, the route,
departure time, activity location, and duration choice of all individuals from an origin participating
in the same set of activities are such that the difference in utility between any two paths is at most
ε units.

3 B-Dynamic Algorithm

The proposed B-Dynamic Algorithm is an extension of Dial’s Algorithm B. We summarize Dial’s
algorithm first and extend it to obtain B-Dynamic algorithm.

In Algorithm B, the network is decomposed into acyclic sub-networks rooted at the origin. This
acyclic sub-network, referred to as a ‘bush’, contains arcs that carry all, and only, flow from the given
origin to a destination. In the B-Dynamic algorithm, we have the additional flow differentiating
characteristic of activity sequence. Further, the arc flows are time-varying. Therefore the ‘bush’ in
B-Dynamic algorithm will be derived from time-expanded network including activity arcs.
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The basic principle of Algorithm B is to ensure the min- and max-cost paths for each origin
specific bush are within the ε tolerance limit. This is achieved iteratively by equilibrating the current
bush and updating it to include any new min-cost paths and equilibrating again till convergence is
achieved. Equilibration of a bush, in turn, is achieved by computing the min- and max-cost paths,
shifting flows between these two paths so that they are equilibrated, and repeating the process till
all paths are equilibrated.

The overall structure of the process for the B-Dynamic Algorithm is exactly similar. We need to
ensure that the min- and max-utility paths for each origin and each activity sequence combination
specific bush are within the ε tolerance limit. However, the implementation details for each step is
different.

B-Dynamic Algorithm

1 Initialization: For each origin, destination, and activity sequence combination create an initial
feasible bush.

2 Equilibration: For each origin, destination, and activity sequence combination,

2a Construct dynamic min- and max-utility paths from corresponding bush.

2b If difference in cost between min- and max-utility paths is greater than ε, shift trips from
min- to max-utility paths such that their cost difference is less than ε. Else, skip to [2d].

2c Re-compute travel delays for all travel arcs for all times and utilities for all activity arcs for
all times. Return to [2a].

2d Check if the max-utility path on the entire network is greater than the min-utility path of
the bush. If yes, augment the bush with new max-utility path. Return to [2a]. Else, continue
to [3].

3 Termination: For each origin, destination, and activity sequence combination, check if the
max-utility path on the entire network is lesser than the min-utility path of the bush. If yes,
terminate. Else, return to [2].

4 Modified Dynamic Shortest Path Algorithm

The dynamic shortest path algorithm is required to compute the min- and max-utility paths is
different from the traditional time-dependent shortest path (Ziliaskopoulos and Mahmassani 1993).
First, the cost labels on the network are not the travel times. The cost is represented by the utility
which is a function of the travel times (or durations in activity arcs). Second, the shortest (or
max-utility) path must include certain activity arcs to satisfy the activity-sequence combination
for each individual. Therefore, the shortest path labels at each node must keep track of the activity-
sequence traversed in the current path. The modified dynamic shortest path algorithm is given
below:

Given a network G(N,A) where A includes both travel and activity arcs.
Notation:
λi[t, a]: Shortest-path label for node i at time-period t and activity-combination lexicon a
L: Set of all activity-combination lexicon.
Let us say we have two different activities Shop and Eat out; then the lexicon set
L = None, Shop, Eat out, Shop+Eat out
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SE: Scan eligible list. We have a 2-tuple consisting of (node i, time interval t) as opposed to
just the node. This may significantly reduce the number of computations that need to be made.

FSi: Forward star at node i.
AAi: Set of activity arcs at node i. We store the id k of the activity arc.
lk: Label of activity arc k, for example Shop, Eat out.
uk(t): Utility of participating in activity arc k when starting the activity at time t.
dk(t): duration of activity arc k.
uij(t): (dis)utility of traveling on arc i− j leaving arc i at time t.
dij(t): duration of traversing arc i− j leaving arc i at time t.
Usually, uij(t) = −α(t)dij(t), where α is the value of time.

Let M = max
∀k,t

uk(t)

then, let u′k(t) = M − uk(t)
and u′ij(t) = M − uij(t)

Now the shortest-path obtained by using [u′k(t), u′ij(t)] as the cost vectors will give us the
maximum utility path. Further, all tranformed costs are clearly non-negative. We do not have to
worry about negative cycles.

The modified TDSP is an extension of the traditional TDSP algorithm. For every (node i, time
interval pair t) in the scan eligible list, we scan both travel arcs ((i, j) : j ∈ FSi) as well as activity
arcs (k ∈ AAi).

Step 1 Initialization
λi(t, l) =∞ ∀ (i, t, l) ∈ (N,T, L)\(origin, 0, None)
λorigin(0, None) = 0
Insert (origin, 0) into SE list.

Step 2 If SE is empty, then go to step 3.
Else, remove top (node i, time t) pair from SE list.
For each activity combination l ∈ L
For each arc (i, j) ∈ FSi

If λj [t+ dij [t], l] > λi[t, l] + u′ij [t]
Then, λj [t+ dij [t], l] = λi[t, l] + u′ij [t]
PREDj [t+ dij [t], l] = [i, t]
Insert (j, t+ dij [t]) into SE list.

Else, go to next node j
End Loop

End Loop
For each activity combination lexicon l ∈ L
For each activity arc k ∈ AAi : lk /∈ l
If λi[t+ dk[t], l + lk] > λi[t, l] + u′k[t]
Then, λi[t+ dk[t], l + lk] = λi[t, l] + u′k[t]
PREDi[t+ dk[t], l + lk] = [i, t]
Insert (i, t+ dk[t]) into SE list.

Else, go to next arc
End Loop

End Loop
Step 3 Stop
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