# Space and Accessibility in the SANDAG Activity-Based Model 

Authors:
Joel Freedman, PB Americas, Portland, OR (Corresponding)
Peter Vovsha, PB Americas, New York, NY
Wu Sun, San Diego Association of Governments (SANDAG), San Diego, CA
Surabhi Gupta, PB Americas, New York, NY
Ziying Ouyang, San Diego Association of Governments (SANDAG), San Diego, CA
Rick Curry, San Diego Association of Governments (SANDAG), San Diego, CA
Clint Daniels, San Diego Association of Governments (SANDAG), San Diego, CA

Words: 2,300
Tables: 5
Figures: 6

## Introduction

This paper describes a unique approach to addressing 'the tyranny of zones' problem in travel demand forecasting models, within the context of an Activity-Based travel demand model (ABM). The existing trip-based modeling system developed for San Diego Association of Governments (SANDAG) utilizes multiple layers of spatial analysis, including a typical Transportation Analysis Zone (TAZ) system for representation of auto times and costs, and a spatial classification scheme of approximately 33,000 polygons for representation of trip ends, transit and non-motorized accessibilities, and land-use data. One of the unique aspects of this system is that transit modal availabilities, times, and costs are explicitly based on the locations of trip ends vis-à-vis the transit stops that serve them. This ensures that the access and egress times to transit stops are consistent with the skimmed in-vehicle times and costs, and allows the model to represent tradeoffs between walk time and transfers, as often occurs for feeder bus access to rail. The traditional method of utilizing zonal-based levels-of-service coupled with aggregate zonal percent walk for TAZs is obviated by this approach. The implementation of the Coordinated Travel - Regional Activity-Based Modeling Platform (CT-RAMP) currently under development for SANDAG takes full advantage of this scheme for destination and mode choice, and utilizes this disaggregate data for calculation of accessibility measures. The following discussion addresses the spatial classification scheme, the accessibility measures specified for model estimation and application, and influence of accessibilities in the generation of travel within the context of the ABM.

## Space and Transportation Supply

The SANDAG model encompasses San Diego County, which is approximately 4,500 square miles, and was home to $3,173,407$ million persons in January 2009. The modeling area is represented by a TAZ system of 4,600 zones, and a finer-detailed spatial system of 33,353 polygons, referred to as Master Geographic Reference Areas (MGRAs), as shown in Figure 1. The TAZ system is used to skim auto networks and assign auto demand. Transit and non-motorized travel is handled differently. The transit network is coded with explicit representation of transit stops as 'dummy zones', or Transit Access Points (TAPs) as shown in Figure 2. TransCAD is used to skim stop-tostop travel times and costs, including the standard in-vehicle time, first wait, transfer wait, etc. Walk access to/from transit stops is calculated between MGRA centroid and transit stop using GIS methods that take into account physical constraints and slope (Figure 3). Then the utility of travel by each stop-stop combination is computed on-thefly within the model application software. This approach ensures that the access times that are computed using GIS and used in accessibility calculations are consistent with the in-vehicle times that are calculated using the TransCAD transit skimming procedure. This is a significant improvement over other ABMs that utilize detailed location data which assumes that the nearest transit stop to each parcel is consistent with the level-of-service matrix skimmed at a zonal level. In the SANDAG approach, no such
simplifying assumptions are made, and trade-offs regarding walking distance to transit versus in-vehicle time and transfers are explicit and accurate.

Figure 4 shows an example of the explicit trade-offs that the model considers. In this figure, there is a choice between walking to a bus that offers direct service between the origin and destination MGRA, versus walking a short distance from the origin MGRA to a feeder bus that provides access to an LRT station, versus walking further directly to the origin LRT station. Utilities are calculated for all potential choices in the mode choice application software, as well as auto access utilities (not shown). Auto access times are calculated based on the TAZ of the trip origin (according to its MGRA) and the TAZ of the boarding transit stop/parking lot. Non-motorized utilities, including walking and biking, are also represented at the MGRA level. All of these lower-level calculations are utilized in a nested logit mode choice model (Figure 5), and the logsum of the model is taken for calculation of subsequent multi-modal accessibility measures.

Figure 1: MGRAs and TAZs


Figure 2: Transit Network, Stops, and Transit Access Points


Figure 3: Walking Constraints


Figure 4: Transit Paths


Figure 5: Mode Choice Model Structure


## Accessibility Measures for the SANDAG ABM

There are two different types of accessibilities used in the SANDAG ABM:

1) The mode choice logsum, which is the composite utility of travel across all modes from a given origin MGRA to a given destination MGRA, and;
2) The destination choice logsum, which is the composite utility of travel across all modes to all potential destinations from an origin MGRA to all destination MGRAs.

Mode choice accessibilities are needed to ensure that destination choice models reflect modal opportunities between MGRA pairs. Destination choice accessibilities are primarily needed to ensure that the upper-level models in the ABM hierarchy such as car ownership, daily activity pattern (DAP), and (non-mandatory) tour frequency are sensitive to improvements of transportation level-of-service across all modes, as well as changes in land use. They can also be used for location choices (tour primary destination and stop location) as part of the attraction (size) variable, though this formulation has been rare in practice so far. Accessibility indices are similar in nature to density measures and can be thought of as continuously buffered "fuzzy" densities; they reflect the opportunities to implement a travel tour for a certain purpose from a certain origin (residential or workplace). They are needed because it is infeasible to link all travel choices by full logsums due to the number of potential alternatives across all dimensions (activities, modes, time periods, tour patterns, and daily activity patterns). The SANDAG ABM model is one of the few advanced travel models where accessibilities are not represented simply as "flat" area-type dummies or TAZ-based levels of service.

Destination accessibility measures have the following general form:

$$
A_{i}=\ln \left[\sum_{j=1}^{I} S_{j} \times \exp \nmid \gamma c_{i j}\right],
$$

## Equation 1

Where:

| $i, j \in I$ | $=$ | origin and destination zones, |
| :--- | :--- | :--- |
| $A_{i}$ | $=$ | accessibility measure calculated for each origin MGRA, |
| $S_{j}$ | $=$ | attraction size variable for each potential destination MGRA, |
| $c_{i j}$ | $=$ | cost of travel between origin MGRA and destination MGRA, |
| $\gamma$ | $=$ | dispersion coefficient. |

In this form, the destination choice accessibility measure is essentially a sum of all attractions in the region discounted by the travel impedance. The dispersion coefficient expresses a sensitivity of the given type of activity to travel cost, i.e. travelers' tolerance to longer travel times in order to participate in the given activity. Larger dispersion coefficients reflect a greater sensitivity to travel times and costs, reflecting more localized activity types.

## Differentiation of Accessibility Measures

The design adopted for the SANDAG ABM requires destination accessibility indices only for non-mandatory travel purposes since the usual location of work / school activity for each worker / student is modeled prior to the DAP, tour frequency, and tour destination choice for non-mandatory tours.

The set of accessibility measures created for analysis and testing in the SANDAG ABM model is summarized in Table 1.

Table 1: Accessibility Measures for the SANDAG ABM

| No | Description | Model where it is used | Attraction size variable $S_{j}$ | Travel cost $c_{i j}$ | Dispersion coefficient $-\gamma$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Access to non-mandatory attractions by SOV in offpeak | Car ownership | Total weighted employment for all purposes | Generalized SOV time including tolls | -0.05 |
| 2 | Access to non-mandatory attractions by transit in off peak | Car ownership | Total weighted employment for all purposes | Generalized best path walk-totransit time including fares | -0.05 |
| 3 | Access to non-mandatory attractions by walk | Car ownership | Total weighted employment for all purposes | SOV off-peak distance (set to 999 if >3) | -1.00 |
| 4-9 | Access to non-mandatory attractions by all modes | CDAP | Total weighted employment for all purposes | Off-peak mode choice logsums (SOV skims for ipersons, HOV skims for interaction) segmented by 3 car-availability groups | +1.00 |
| 10-12 | Access to shopping attractions by all modes except SOV | Joint tour frequency | Weighted employment for shopping | Off-peak mode choice logsum (HOV skims) segmented by 3 HH adult car-availability groups | +1.00 |
| 13-15 | Access to maintenance attractions by all modes except SOV | Joint tour frequency | Weighted employment for maintenance | Off-peak mode choice logsum (HOV skims) segmented by 3 adult car-availability groups | +1.00 |
| 16-18 | Access to eating-out attractions by all modes except SOV | Joint tour frequency | Weighted employment for eating out | Off-peak mode choice logsum (HOV skims) segmented by 3 adult HH car-availability groups | +1.00 |
| 19-21 | Access to visiting attractions by all modes except SOV | Joint tour frequency | Total households | Off-peak mode choice logsum (HOV skims) segmented by 3 adult car-availability groups | +1.00 |
| 12-24 | Access to discretionary attractions by all modes except SOV | Joint tour frequency | Weighted employment for discretionary | Off-peak mode choice logsum (HOV skims) segmented by 3 adult caravailability groups | +1.00 |
| 25-27 | Access to escorting attractions by all modes except SOV | Allocated tour frequency | Total households | AM mode choice logsum (HOV skims) segmented by 3 adult caravailability groups | +1.00 |
| 28-30 | Access to shopping attractions by all modes except HOV | Allocated <br> tour frequency | Weighted employment for shopping | Off-peak mode choice logsum (SOV skims) segmented by 3 adult car-availability groups | +1.00 |


| No | Description | Model <br> where it is <br> used | Attraction size <br> variable $S_{j}$ | Travel cost $c_{i j}$ | Dispersion <br> coefficient <br> $-\gamma$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $31-33$ | Access to maintenance <br> attractions by all modes <br> except HOV | Allocated <br> tour <br> frequency | Weighted <br> employment for <br> maintenance | Off-peak mode choice logsum <br> (SOV skims) segmented by 3 adult <br> car-availability groups | +1.00 |
| $34-36$ | Access to eating-out <br> attractions by all modes <br> except HOV | Individual <br> tour <br> frequency | Weighted <br> employment for <br> eating out | Off-peak mode choice logsum <br> (SOV skims) segmented by 3 car- <br> availability groups | +1.00 |
| $37-39$ | Access to visiting <br> attractions by all modes <br> except HOV | Individual <br> tour <br> frequency | Total households | Off-peak mode choice logsum <br> (SOV skims) segmented by 3 car- <br> availability groups | +1.00 |
| $40-42$ | Access to discretionary <br> attractions by all modes <br> except HOV | Individual <br> tour <br> frequency | Weighted <br> employment for <br> discretionary | Off-peak mode choice logsum <br> (SOV skims) segmented by 3 car- <br> availability groups | +1.00 |
| $43-45$ | Access to at-work <br> attractions by all modes <br> except HOV | Individual <br> sub-tour <br> frequency | Weighted <br> employment for <br> at work | Off-peak mode choice logsum <br> (SOV skims) segmented by adult 2 <br> car-availability groups (0 cars and <br> cars equal or graeter that <br> workers) | +1.00 |

The size variable is calculated as a linear combination of the MGRA land-use variables with the specified coefficients, as shown in Table 2. The values of coefficients in the table have been estimated by means of an auxiliary regression model that used the LU variables as independent variables and expanded trip ends by travel purpose as dependent variables.

Table 2: Correspondence of LU variables to travel purposes and relative attraction rate

| Employment by PECAS Model categories of Industry and other variables |  | Non-mandatory travel purpose in the ABM |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 4=escort | 5=shop | 6=main | 7=eat | 8=visit | 9=disc | At-work | All |
| 12 | Retail Activity |  | 3.194 | 0.776 | 0.325 |  | 0.098 | 0.154 | 3.970 |
| 13 | Professional and Business Services |  |  | 0.243 |  |  |  | 0.029 | 0.087 |
| 19 | Amusement Services |  |  |  | 0.089 |  | 0.364 |  | 0.407 |
| 20 | Hotels Activity (479, 480) |  |  |  |  |  | 0.318 |  |  |
| 21 | Restaurants and Bars |  | 3.081 |  | 2.103 | 0.253 | 0.769 | 0.367 | 8.123 |
| 22 | Personal Services Retail Based |  |  | 0.500 |  |  |  | 0.054 | 0.999 |
| 23 | Religious Activity |  |  |  |  |  | 5.154 |  | 7.786 |
| 25 | State and Local Government Enterprises Activity |  |  |  |  |  |  |  |  |
| 27 | Federal Non-Military Activity |  |  | 1.025 |  |  |  |  | 1.313 |
| 29/30 | State and Local Non-Education Activity |  |  |  |  |  |  |  | 0.214 |
|  | Total number of households | 1.0 |  |  |  | 0.105 | 0.156 |  | 0.489 |

Mode choice logsums are calculated using time and cost coefficients borrowed from existing 4-step models, and mode choice constants estimated from survey data. This is due to the lack of recent on-board survey data and the schedule for ABM development. SANDAG is processing on-board survey data collected in fall 2009 and mode choice model parameters used in destination choice accessibilities will be updated when tour mode choice models are estimated using this data. Travel costs are computed using different combinations of auto and transit modes depending on the accessibility to be
calculated. For example, accessibilities for joint tours are calculated by "turning off" the drive-alone portion of the mode choice model (Figure 5) thereby allowing HOV modes to have a greater impact on accessibilities. Accessibilities for car ownership models include auto only, transit only, and non-motorized-only, in order to reflect the appropriate accessibilities for different auto ownership choices.

An example plot of accessibilities (for shopping attractions, HOV logsums, 0 autos) is given in Figure 6.

Figure 6: Accessibility Plot


## Accessibility Effects on Auto Ownership and Travel Pattern Generation

The following section describes some of the model estimation results that use the accessibilities described above.

## Auto Ownership

The household car ownership model predicts the number of autos available to a household. The model was estimated in a nested logit form using the ALOGIT software. The car-ownership model is applied after the work, university, and school location choices and includes relative auto, transit, and non-motorized accessibilities to both
mandatory activities (at a person level) and non-mandatory activities (at a household level) as explanatory variables. In this model, car sufficiency is used to stratify household composition and educational level variables. Model parameters are given in the appendix in Table 3, and relevant accessibility parameters are described below:

- The positive coefficient for non-motorized accessibility for 0 car ownership is consistent with the expectation that the more accessible a household is to nonmandatory activities by walking or biking, the more likely the household is to own zero autos. For motorized modes, the difference between auto and transit accessibilities has a negative coefficient for 0 car ownership, and this is consistent with the expectation that households with relatively better auto access than transit access to non-mandatory destinations are less likely to own zero cars.
- The negative coefficient on 3 and 4 or more cars for the intersection density variable shows that households in dense urban areas are less likely to have more cars. Population density and retail employment density variables both have positive coefficients for 0 car ownership. This shows household live in dense urban areas are more likely to have 0 cars.
- The mandatory tour auto dependency variable (auto logsum - transit logsum) has negative coefficients for 0 car ownership for both workers and students. This shows that a household is less likely to own 0 cars if workers and students in the household have a strong dependency on using the auto mode for commuting to work and school.
- The positive coefficient of 0 car ownership for percent of mandatory tour travel time by rail mode indicates a greater likelihood to own 0 cars for households of higher use of rail for mandatory tours by workers and students.


## Coordinated Daily Activity Pattern Model

The Coordinated Daily Activity Pattern (CDAP) model predicts the activity pattern types for an entire day for all household members. The model was estimated in a multinomial logit form using the ALOGIT software. The alternatives in the model are formed based on the number of household members, with a choice of one out of three daily activity pattern types (mandatory, non-mandatory, or stay-at-home) for each household member (up to a maximum of 5 members chosen based on hierarchical role for household size greater than 5) and a joint travel boolean indicator for the household as a whole. Joint travel is defined as a tour in which two or more household members participate fully in all activities on the tour (escorting tours are not included). Estimation results are shown in the appendix in Table 4, and the relevant accessibility parameters are described below:

- Better accessibilities to non-mandatory destinations improve the chances of making non-mandatory travel for full time workers, non-workers and driving school age children.
- Workers are much less likely to travel for mandatory activities if their usual work location is home. Workers who reported not having any usual work location are less likely to have mandatory travel.
- For a household member with a mandatory pattern, the chances of participating in joint travel are higher with better mode choice accessibility to work/school location, reflecting that these household members are likely to spend less time in work or school travel and therefore have more time for joint travel.
- University students are more likely to travel to mandatory activities if accessibility to university location is high. This likely reflects the increased likelihood of full-time students living close to college campus, rather than strict effects of greater mobility on student travel.


## Individual Daily Activity Pattern Model

The Individual Daily Activity Pattern (IDAP) model predicts the number of nonmandatory (escorting, shopping, maintenance, eating out, visiting and discretionary) tours by purpose for each household member. This model is applied after the work-athome, CDAP, and Mandatory tour frequency model. In the first year of model development, this model is used for predicting both joint and individual trips. However, in subsequent phases, the travel predicted by this model will be handled by a separate allocated (maintenance) tour frequency model and a discretionary tour frequency model. This model is only applied for active household members in terms of travel (who have either mandatory or non-mandatory DAP) and is estimated separately for each person type. Estimation results for workers and students are given in the appendix in Table 5, and the relevant accessibility terms are as follows:

- Escorting, shopping, eating out, maintenance, and discretionary accessibilities are all positive and significant when interacted with their appropriate tour purpose, indicating that more accessible households will tend to generate more non-mandatory tours.
- Work/school mandatory accessibilities (mode choice logsums) are significant and positive, indicating that the less time is spent travelling for mandatory tours, the more time is available to engage in non-mandatory travel, and the greater the likelihood of engaging in such travel.


## Conclusions

The CT-RAMP modeling form provides many opportunities to incorporate the influence of accessibility in travel behavior, and the SANDAG method of representing space and network costs in a highly disaggregate manner provides a unique and valuable counterpart to the CT-RAMP system. This paper demonstrates that it is possible to represent space at a very detailed level of resolution with consistent transit and non-motorized travel costs, and that the accessibilities that result from such a representation are significant in explaining variation in travel behavior. The next step in the SANDAG model development process includes testing the effects of accessibility and other model variables in forecasts using the models, and comparing these results to existing tripbased models. In subsequent phases of model development, asserted mode choice models will be replaced with estimated models and the full CT-RAMP model system will be developed.

## Appendix: Estimation Results

Table 3: Auto Ownership Estimation Results

| Variable | Relevant types | Coefficient \& T-Stat by Choice Alternative |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 car |  | 1 car |  | 2 cars |  | 3 cars |  | 4+ cars |  |
|  |  | coeff | t-stat |
| Number of driving age members | 1 | -2.721 | -1.346 | ref | ref | -1.438 | -2.357 | -2.866 | -4.059 | -3.763 | -4.144 |
|  | 2 | -5.032 | -2.416 | -3.268 | -5.439 | ref | ref | -1.207 | -2.995 | -2.647 | -4.041 |
|  | 3 | -4.516 | -2.109 | -3.695 | -5.256 | -0.520 | -1.223 | ref | ref | -0.815 | -1.226 |
|  | 4+ | -8.965 | -3.294 | -5.977 | -6.017 | -1.401 | -2.061 | -0.770 | -1.114 | ref | ref |
| Number of workers/ drivers | 1 drivers | -2.515 | -4.448 | ref | ref | 0.761 | 3.011 | 0.761 | 3.011 | 0.761 | 3.011 |
|  | 2 drivers | -2.515 | -4.448 | -0.643 | -1.681 | ref | ref | 0.761 | 3.011 | 0.761 | 3.011 |
|  | 3 drivers | -2.515 | -4.448 | -0.643 | -1.681 | -0.643 | -1.681 | ref | ref | 0.761 | 3.011 |
|  | 4+ drivers | -2.515 | -4.448 | -0.643 | -1.681 | -0.643 | -1.681 | -0.643 | -1.681 | ref | ref |
| Number of young adult/drivers | 1 driver | -2.290 | -2.434 | ref | ref | 0 | -- | 0 | -- | 0 | -- |
|  | 2 drivers | -2.290 | -2.434 | -0.891 | -1.780 | ref | ref | 0 | -- | 0 | -- |
|  | 3 drivers | -2.290 | -2.434 | -0.891 | -1.780 | -0.891 | -1.780 | ref | ref | 0 | -- |
|  | 4+ drivers | -2.290 | -2.434 | -0.891 | -1.780 | -0.891 | -1.780 | -0.891 | -1.780 | ref | ref |
| Number of school children/drivers | 1 driver | -0.513 | -1.321 | ref | ref | 0.157 | 1.109 | 0.157 | 1.109 | 0.157 | 1.109 |
|  | 2 drivers | -0.513 | -1.321 | -0.030 | -0.123 | ref | ref | 0.157 | 1.109 | 0.157 | 1.109 |
|  | 3 drivers | -0.513 | -1.321 | -0.030 | -0.123 | -0.030 | -0.123 | ref | ref | 0.157 | 1.109 |
|  | 4+ drivers | -0.513 | -1.321 | -0.030 | -0.123 | -0.030 | -0.123 | -0.030 | -0.123 | ref | ref |
| Number of retiree < age 80/drivers | 1 driver | -0.732 | -1.256 | ref | ref | 0.461 | 1.902 | 0.461 | 1.902 | 0.461 | 1.902 |
|  | 2 drivers | -0.732 | -1.256 | -0.303 | -0.671 | ref | ref | 0.461 | 1.902 | 0.461 | 1.902 |
|  | 3 drivers | -0.732 | -1.256 | -0.303 | -0.671 | -0.303 | -0.671 | ref | ref | 0.461 | 1.902 |
|  | 4+ drivers | -0.732 | -1.256 | -0.303 | -0.671 | -0.303 | -0.671 | -0.303 | -0.671 | ref | ref |
| Number of 80plus/drivers | 1 driver | 0.766 | 0.759 | ref | ref | -1.316 | -4.143 | -1.316 | -4.143 | -1.316 | -4.143 |
|  | 2 drivers | 0.766 | 0.759 | 0.342 | 0.377 | ref | ref | -1.316 | -4.143 | -1.316 | -4.143 |


|  | 3 drivers | 0.766 | 0.759 | 0.342 | 0.377 | 0.342 | 0.377 | ref | ref | -1.316 | -4.143 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4+ drivers | 0.766 | 0.759 | 0.342 | 0.377 | 0.342 | 0.377 | 0.342 | 0.377 | ref | ref |
| HH Income | <30k | 4.000 | 9.653 | 0.947 | 5.493 | ref | ref | -0.914 | -3.174 | -1.413 | -2.904 |
|  | 30-60k | 1.391 | 3.096 | 0.513 | 3.558 | ref | ref | -0.462 | -2.583 | -0.407 | -1.582 |
|  | 100k+ | -0.661 | -3.824 | -0.661 | -3.824 | ref | ref | 0.136 | 1.003 | 0.219 | 1.126 |
| Education Non high school graduate indicator | 1 driver | 1.117 | 1.736 | ref | ref | -0.258 | -1.062 | -0.258 | -1.062 | -0.258 | -1.062 |
|  | 2 drivers | 1.117 | 1.736 | 0.636 | 1.208 | ref | ref | -0.258 | -1.062 | -0.258 | -1.062 |
|  | 3 drivers | 1.117 | 1.736 | 0.636 | 1.208 | 0.636 | 1.208 | ref | ref | -0.258 | -1.062 |
|  | 4+ drivers | 1.117 | 1.736 | 0.636 | 1.208 | 0.636 | 1.208 | 0.636 | 1.208 | ref | ref |
| Zonal accessibility | Non-motorized | 0.091 | 0.410 | 0.060 | 0.956 | ref | ref | -0.080 | -1.881 | -0.153 | -2.632 |
|  | Auto-transit | -0.303 | -4.259 | -0.013 | -0.873 | ref | ref | 0 | -- | 0 | -- |
| 4Ds | Intersection density | 0 | -- | 0 | -- | ref | ref | -0.474 | -1.694 | -0.474 | -1.694 |
|  | Population density | 0.068 | 4.028 | 0.034 | 3.900 | ref | ref | 0 | -- | 0 | -- |
|  | Retail density | 0.114 | 2.115 | 0.044 | 1.842 | ref | ref | 0 | -- | 0 | -- |
| Residence Type | detached | -2.676 | -8.184 | -0.794 | -6.594 | ref | ref | 0.638 | 4.151 | 0.807 | 3.288 |
| Man auto dependency | worker | -0.074 | -0.237 | -0.253 | -2.349 | ref | ref | 0.137 | 1.865 | 0.137 | 1.865 |
|  | student | -1.761 | -2.290 | -0.187 | -0.726 | ref | ref | 0 | -- | 0 | -- |
| Mandatory tour rail mode | worker | 0.262 | 1.438 | 0.262 | 1.438 | ref | ref | -0.307 | -1.701 | -0.307 | -1.701 |
|  | student | 0.393 | 0.729 | 0.393 | 0.729 | ref | ref | 0 | -- | 0 | -- |

Table 4: Coordinated Daily Activity Pattern Model Estimation Results

| Utility Terms | FW- Full Time Worker |  | PW-Part Time Worker |  | US- University Student |  | NW- NonWorker |  | RT- Retiree |  | SD- Driving School Child |  | SP- Pre-Driving School Child |  | PS- PreSchool Child |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | Tstat |
| Constants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory Non-Mandatory Home all day |  | $\begin{aligned} & 18.00 \\ & -0.34 \end{aligned}$ | $2.9274$ <br> 1.3675 | 7.90 <br> 3.81 | 1.7642 <br> $-0.3138$ | $\begin{array}{r} 3.19 \\ -0.53 \end{array}$ | $\begin{aligned} & -3.1521 \\ & 0.5130 \end{aligned}$ | $\begin{array}{r} -7.43 \\ 0.19 \end{array}$ | $-2.7055$ <br> 0.9234 | $\begin{array}{r} -5.57 \\ 5.19 \end{array}$ | 3.2036 <br> 3.4315 | $\begin{array}{r} 6.08 \\ -0.34 \end{array}$ | 7.0644 <br> 2.5740 | $\begin{aligned} & 6.67 \\ & 2.39 \end{aligned}$ | 1.1000 0.6017 | $\begin{aligned} & 3.15 \\ & 2.18 \end{aligned}$ |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Age 0-1, Mandatory <br> Age 0-1, Non-Mandatory <br> Age 4-5, Mandatory <br> Age 4-5, Non-Mandatory <br> Age 13-15, Mandatory <br> Age < 35 yrs, Mandatory <br> Age < 35 yrs, Non-Mandatory | -0.1450 | -0.93 | $\begin{aligned} & -0.7095 \\ & -1.4213 \end{aligned}$ | $\begin{aligned} & -2.07 \\ & -3.86 \end{aligned}$ |  |  |  |  |  |  |  |  | -0.8582 | -2.96 | $\begin{array}{r} -1.5151 \\ 0.3702 \\ 3.2965 \\ 1.1392 \end{array}$ | $\begin{array}{r} -4.17 \\ 1.30 \\ 6.60 \\ 2.19 \end{array}$ |
| Household Income |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory <br> Less than 30K <br> Between 30 and 60 K <br> Between 60 and100K <br> More than 100K <br> Home All day <br> Less than 30K <br> Between 30 and 60 K <br> Between 60 and100K <br> More than 100K | $\begin{aligned} & -0.7201 \\ & -0.5331 \end{aligned}$ | -3.76 -1.81 | 0.1285 | 0.52 | $\begin{aligned} & 0.4359 \\ & \\ & \\ & \\ & \\ & \\ & 0.6352 \\ & 0.6352 \\ & \hline \end{aligned}$ | $1.00$ $\begin{aligned} & 1.14 \\ & 1.14 \\ & \hline \end{aligned}$ | -0.2468 | -1.00 | $\begin{aligned} & -0.1418 \\ & -0.2388 \end{aligned}$ | $-0.13$ $-1.31$ |  |  | $\begin{aligned} & 1.2007 \\ & 1.8947 \end{aligned}$ | 1.74 $2.38$ | $\begin{aligned} & 0.2952 \\ & 0.2952 \end{aligned}$ | $\begin{aligned} & 1.27 \\ & 1.27 \end{aligned}$ |
| Gender |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Female, Mandatory <br> Female, Non-Mandatory | $\begin{aligned} & 0.3032 \\ & 0.7718 \end{aligned}$ | $\begin{aligned} & 1.86 \\ & 4.09 \end{aligned}$ | $\begin{aligned} & 0.0610 \\ & 0.4176 \end{aligned}$ | $\begin{aligned} & 0.19 \\ & 1.28 \end{aligned}$ | $\begin{aligned} & 1.2429 \\ & 2.2549 \end{aligned}$ | $\begin{aligned} & 2.18 \\ & 3.48 \end{aligned}$ | 0.1475 | 0.74 | $\begin{aligned} & -0.7751 \\ & -0.3729 \end{aligned}$ | $\begin{aligned} & -1.14 \\ & -2.71 \end{aligned}$ | 0.7991 | 1.35 |  |  |  |  |


| Utility Terms | FW- Full Time Worker |  | PW-Part Time Worker |  | US- University Student |  | NW- NonWorker |  | RT- Retiree |  | SD- Driving <br> School Child |  | SP- Pre-Driving School Child |  | PS- PreSchool Child |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | Tstat |
| Car Sufficiency |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory <br> Zero Cars <br> Fewer Cars than Workers <br> Cars Equal to Worker <br> More Cars than Workers | $\begin{aligned} & -0.3377 \\ & -0.3377 \end{aligned}$ | $\begin{aligned} & -2.02 \\ & -2.02 \end{aligned}$ |  |  |  |  |  |  |  |  | 0.0988 | 0.20 |  |  | $\begin{aligned} & -0.5917 \\ & -0.4778 \end{aligned}$ | $\begin{aligned} & -1.00 \\ & -0.77 \end{aligned}$ |
| Non-Mandatory <br> Zero Cars <br> Fewer Cars than Workers <br> Cars Equal to Worker <br> More Cars than Workers | $-0.0870$ | $-0.66$ |  |  |  |  | 0.2122 | 1.09 | 0.8642 | 5.14 |  |  |  |  | $-1.4389$ <br> -0.5259 | $\begin{aligned} & -2.48 \\ & -1.01 \end{aligned}$ |
| Accessibility and Others |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory <br> Work/School Accessibility Usual Work Place is Home No Usual work location <br> Non-Mandatory Work/School Accessibility Usual Work Place is Home Retail Accessibility | $\begin{aligned} & -2.4147 \\ & -0.3777 \\ & \\ & 0.8762 \\ & 0.0445 \end{aligned}$ | $\begin{array}{r} -12.39 \\ -1.79 \\ \\ \\ 4.55 \\ 0.29 \end{array}$ | $\begin{aligned} & -2.8801 \\ & -0.6869 \end{aligned}$ | $\begin{array}{r} -11.02 \\ -2.17 \end{array}$ | 0.0243 | 0.09 | 0.0069 | 0.04 |  |  | 0.1570 | 0.24 |  |  |  |  |
| Dwelling Type |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| At Home Detached HH | 0.1538 | 0.96 | 0.0862 | 0.27 |  |  |  |  | 0.7415 | 5.05 |  |  | 2.0230 | 2.10 |  |  |
| Two Person Interactions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Full Time Worker Part Time Worker University Student | 0.0627 | 0.35 | 0.5967 | 1.66 | 0.3881 | 0.74 |  |  |  |  |  |  |  |  |  |  |


| Utility Terms | FW- Full Time Worker |  | PW-Part Time Worker |  | US- University Student |  | NW- NonWorker |  | RT- Retiree |  | SD- Driving School Child |  | SP- Pre-Driving School Child |  | PS- PreSchool Child |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | Tstat |
| Non-Worker <br> Retiree <br> Driving School Child <br> Pre-Driving School Child <br> Pre-School Child | $\begin{aligned} & 0.1434 \\ & 0.3851 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 2.54 \end{aligned}$ |  | $\begin{aligned} & 1.79 \\ & 1.49 \end{aligned}$ | $\begin{aligned} & 0.2755 \\ & 0.4148 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 1.02 \end{aligned}$ |  |  |  |  | 0.6854 <br> 0.3692 <br> 0.5467 | $\begin{aligned} & 0.86 \\ & 1.41 \\ & 0.85 \end{aligned}$ | 0.7729 | 2.59 |  |  |
| Non-Mandatory |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Full Time Worker Part Time Worker University Student Non-Worker Retiree Driving School Child Pre-Driving School Child Pre-School Child | $\begin{aligned} & 0.1500 \\ & \\ & 1.0053 \\ & 0.3041 \\ & 0.0000 \end{aligned}$ | $0.64$ <br> 2.24 <br> 0.90 | $\begin{aligned} & 0.3248 \\ & 0.9231 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 3.07 \end{aligned}$ | $\begin{aligned} & 0.8526 \\ & 0.9678 \\ & 0.9241 \end{aligned}$ | $\begin{aligned} & 2.22 \\ & 1.00 \\ & 2.31 \end{aligned}$ | $\begin{aligned} & 0.7134 \\ & 0.8509 \\ & 1.1721 \end{aligned}$ | $\begin{aligned} & 1.26 \\ & 2.54 \\ & 5.19 \end{aligned}$ |  |  | $\begin{aligned} & 1.8265 \\ & 1.1744 \end{aligned}$ | $\begin{aligned} & 3.95 \\ & 1.00 \end{aligned}$ | $\begin{aligned} & 2.5719 \\ & 0.7036 \end{aligned}$ | $\begin{aligned} & 5.09 \\ & 1.52 \end{aligned}$ | 0.4338 | 1.22 |
| Home All Day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Full Time Worker Part Time Worker University Student Non-Worker Retiree Driving School Child Pre-Driving School Child Pre-School Child | $\begin{aligned} & 0.7511 \\ & 0.0000 \\ & \\ & 0.6692 \\ & 1.3472 \\ & 0.7797 \end{aligned}$ | $\begin{aligned} & 2.04 \\ & \\ & 2.26 \\ & 2.77 \\ & 1.90 \end{aligned}$ | 0.7897 1.6170 1.1606 0.7915 1.8203 1.7547 | $\begin{aligned} & 1.07 \\ & 2.13 \\ & 2.22 \\ & 2.02 \\ & \\ & 1.80 \\ & 3.35 \end{aligned}$ | $\begin{aligned} & 0.6370 \\ & 0.1955 \\ & 2.2375 \\ & \\ & 1.7118 \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.20 \\ & 3.40 \\ & \\ & 2.87 \end{aligned}$ | $\begin{aligned} & 1.2214 \\ & 0.8544 \\ & 1.1160 \\ & 1.9740 \\ & 2.1615 \end{aligned}$ | $\begin{aligned} & 2.98 \\ & 2.97 \\ & 1.62 \\ & 3.56 \\ & 6.54 \end{aligned}$ | $\begin{aligned} & 1.0484 \\ & 1.9117 \end{aligned}$ | $5.40$ $5.20$ | 3.1920 | 2.20 | $\begin{aligned} & 5.6222 \\ & 2.8078 \end{aligned}$ | $\begin{aligned} & 7.75 \\ & 3.91 \end{aligned}$ | 3.2327 | 7.40 |
| Three Person Interactions |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mandatory |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FWxFW <br> FWxPW <br> FWxKD* <br> PWxPW <br> PWxKD | 0.2980 | 2.03 | $\begin{aligned} & 0.2032 \\ & -0.6279 \end{aligned}$ | $\begin{array}{r} 1.22 \\ -1.33 \end{array}$ |  |  |  |  |  |  |  |  | $\begin{aligned} & -0.0432 \\ & -0.1301 \\ & -0.1524 \\ & -0.1259 \end{aligned}$ | $\begin{aligned} & -0.31 \\ & -1.17 \\ & -0.32 \\ & -0.54 \end{aligned}$ | $\begin{aligned} & -0.0432 \\ & -0.1301 \\ & -0.1524 \\ & -0.1259 \end{aligned}$ | $\begin{aligned} & -0.31 \\ & -1.43 \\ & -0.89 \end{aligned}$ |


| Utility Terms | FW- Full Time Worker |  | PW-Part Time Worker |  | US- University Student |  | NW- NonWorker |  | RT- Retiree |  | SD- Driving School Child |  | SP- Pre-Driving School Child |  | PS- PreSchool Child |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | Tstat |
| KDxKD |  |  |  |  |  |  |  |  |  |  |  |  | -0.0112 | -0.06 | -0.0112 | -0.06 |
| Non-Mandatory |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FWxFW |  |  |  |  |  |  |  |  |  |  |  |  | -0.5454 | -0.87 | -0.5454 | -0.87 |
| FWxPW |  |  |  |  |  |  |  |  |  |  |  |  | -1.7459 | -1.76 | -1.7459 | -1.76 |
| FWxNW |  |  |  |  |  |  | -0.9496 | -0.88 |  |  |  |  | -0.1659 | -0.65 | -0.1659 | -0.65 |
| FWxKD |  |  |  |  |  |  |  |  |  |  |  |  | 0.4687 | 1.64 | 0.4687 | 1.64 |
| PWxPW |  |  | 1.8781 | 1.52 |  |  |  |  |  |  |  |  |  |  |  |  |
| PWxNW |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PW×KD |  |  |  |  |  |  |  |  |  |  |  |  | -0.6913 | -1.12 | -0.6913 | -1.12 |
| NWxKD |  |  |  |  |  |  |  |  |  |  |  |  | -0.4894 | -1.41 | -0.4894 | -1.41 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | -0.0582 | -0.11 | -0.0582 | -0.11 |
| Home All Day |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| FWxPW |  |  |  |  |  |  | 1.5072 | 1.87 |  |  |  |  | 0.8382 | 1.08 | 0.8382 | 1.08 |
| FWxNW |  |  |  |  |  |  |  |  |  |  |  |  | 0.4246 | 0.42 | 0.4246 | 0.42 |
| FW×KD |  |  |  |  |  |  |  |  |  |  |  |  | 0.1548 | 0.26 | 0.1548 | 0.26 |
| PWxKD |  |  |  |  |  |  |  |  |  |  |  |  | -0.7547 | -0.98 | -0.7547 | -0.98 |
| NWxNW |  |  |  |  |  |  |  |  |  |  |  |  | -2.2535 | -1.72 | -2.2535 | -1.72 |
| NWxKD |  |  |  |  |  |  |  |  |  |  |  |  | -0.9024 | -0.87 | -0.9024 | -0.87 |
| KDxKD |  |  |  |  |  |  |  |  |  |  |  |  | -1.3723 | -2.27 | -1.3723 | -2.27 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| * KD is for Pre-Driving School Child and Pre-School Child |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5: Individual Daily Activity Pattern Model Estimation Results for Workers and Students

| Utility Terms | Full-time Worker (FW) |  | Part-time Worker (PW) |  | University Student (US) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | T-Stat | Coeff | T-Stat | Coeff | T-Stat |
| Constant by Tour Frequency |  |  |  |  |  |  |
| Number of Non-Mandatory Tours $=0$ |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =1 |  |  |  |  | -0.7556 | -1.35 |
| Number of Non-Mandatory Tours =2 | 1.0913 | 6.75 | 1.0849 | 4.15 | -0.7579 | -0.80 |
| Number of Non-Mandatory Tours =3 | 1.9830 | 7.14 | 1.5772 | 3.75 | -0.7579 | -0.80 |
| Number of Non-Mandatory Tours $=4$ | 2.9392 | 7.01 | 2.8374 | 4.70 | -0.7579 | -0.80 |
| Number of Non-Mandatory Tours =5+ | -999 |  | 2.8374 | 4.70 | -0.7579 | -0.80 |
| Constant by Tour Purpose |  |  |  |  |  |  |
| Escorting Tour | -7.4629 | -3.17 | -6.7430 | -2.00 | -3.0190 | -2.39 |
| Shopping Tour | -7.8325 | -3.53 | -2.8982 | -0.73 | -2.0214 | -3.38 |
| Maintenance Tour | -5.5015 | -2.86 | -7.2800 | -2.34 | -2.0846 | -3.40 |
| Eating out Tour | -12.7521 | -3.32 | -6.6874 | -1.15 | -7.9948 | -1.27 |
| Visiting | -3.4043 | -20.79 | -4.3377 | -12.13 | -3.9562 | -2.18 |
| Discretionary | -3.4146 | -7.38 | -3.1142 | -4.26 | -10.2788 | -1.27 |
| More than 2 tours of same purpose |  |  |  |  |  |  |
| Escorting Tours | 0.9034 | 4.59 | 0.7886 | 2.73 | 2.3371 | 3.61 |
| Shopping Tours | -0.2099 | -0.87 | -0.8405 | -2.17 | -0.9990 | -1.17 |
| Maintenance Tours |  |  |  |  | -1.2216 | -1.04 |
| Discretionary Tours | -0.5445 | -2.02 | -0.8835 | -2.48 | -1.3205 | -1.19 |
| For Persons with Mandatory DAP |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =1 |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =2 | -1.2847 | -6.90 | -1.260 | -5.56 | -0.8376 | -1.72 |
| Number of Non-Mandatory Tours =3 | -1.5120 | -5.11 | -1.260 | -5.56 | -2.7876 | -2.45 |
| Number of Non-Mandatory Tours $=4$ | -3.4987 | -3.29 | -2.043 | -3.60 | -2.7876 | -2.45 |
| Number of Non-Mandatory Tours = 5+ | -3.4987 | -3.29 | -2.043 | -3.60 | -2.7876 | -2.45 |
| Household Income |  |  |  |  |  |  |
| Escorting, Low Income (<30K) |  |  |  |  | 0.2598 | 0.58 |
| Escorting, Medium Income (30-60K) |  |  |  |  | 0.2598 | 0.58 |
| Escorting, Medium Income (60-100K) |  |  |  |  |  |  |
| Escorting, High Income (100-150K) | -0.0074 | -0.06 |  |  | -0.2282 | -0.41 |
| Escorting, High Income (>150K) | -0.0795 | -0.48 | -0.1707 | -0.68 | -0.2282 | -0.41 |
| Shopping, Low Income (<30K) |  |  | -0.6335 | -1.78 |  |  |
| Shopping, Medium Income (30-60K) |  |  | -0.3037 | -1.04 |  |  |
| Shopping, Medium Income (60-100K) |  |  |  |  |  |  |
| Shopping, High Income (100-150K) | 0.1436 | 1.20 | 0.2211 | 0.92 | 0.6090 | 1.16 |
| Shopping, High Income (>150K) | 0.1436 | 1.20 | 0.2211 | 0.92 | 0.6119 | 0.71 |
| Maintenance, Low Income (<30K) | 0.1377 | 0.69 |  |  |  |  |


| Utility Terms | Full-time Worker (FW) |  | Part-time Worker (PW) |  | University Student (US) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | T-Stat | Coeff | T-Stat | Coeff | T-Stat |
| Maintenance, Medium Income (30-60K) <br> Maintenance, Medium Income (60-100K) | $\begin{aligned} & 0.0702 \\ & 0.0000 \\ & \hline \end{aligned}$ | $0.42$ |  |  |  |  |
| Maintenance, High Income (100-150K) | -0.0605 | -0.37 |  |  | -0.5281 | -0.88 |
| Maintenance, High Income (>150K) | -0.5353 | -2.23 |  |  | -0.5281 | -0.88 |
| Eating Out, Low Income (<30K) | -2.6959 | -2.65 | -1.5883 | -2.03 |  |  |
| Eating Out, Medium Income (30-60K) | -0.1275 | -0.47 | -0.5205 | -1.11 |  |  |
| Eating Out, Medium Income (60-100K) | 0.0000 |  |  |  |  |  |
| Eating Out, High Income (100-150K) | 0.0000 |  |  |  | 1.8420 | 1.43 |
| Eating Out, High Income (>150K) | 0.8148 | 3.38 | 0.7248 | 1.66 | 1.8420 | 1.43 |
| Visiting, Low Income (<30K) | -1.0201 | -2.23 |  |  | 0.5460 | 0.72 |
| Visiting, Medium Income (30-60K) |  |  |  |  | 0.5552 | 0.79 |
| Visiting, Medium Income (60-100K) |  |  |  |  |  |  |
| Visiting, High Income (100-150K) |  |  |  |  | -0.4675 | -0.51 |
| Visiting, High Income (>150K) |  |  |  |  | -0.4675 | -0.51 |
| Discretionary, Low Income (<30K) | -0.5934 | -2.04 | -0.6393 | -1.70 |  |  |
| Discretionary, Medium Income (30-60K) | -0.1232 | -0.65 | -0.2041 | -0.74 |  |  |
| Discretionary, Medium Income (60-100K) | 0.0000 |  | 0.0000 |  |  |  |
| Discretionary, High Income (100-150K) | 0.0770 | 0.47 | 0.2723 | 1.19 | 0.9022 | 1.83 |
| Discretionary, High Income (>150K) | 0.2353 | 1.27 | 0.2723 | 1.19 | 0.9022 | 1.83 |
| Gender |  |  |  |  |  |  |
| Female, Escorting Tour | 0.1023 | 0.95 | 0.7700 | 2.97 | 0.0871 | 0.24 |
| Female, Shopping Tour |  |  | 0.6112 | 2.50 | 0.9918 | 2.08 |
| Female, Maintenance Tour |  |  |  |  | 0.7078 | 1.42 |
| Female, Visiting |  |  | -0.4403 | -1.28 | 1.2503 | 1.83 |
| Household Interactions |  |  |  |  |  |  |
| Escorting |  |  |  |  |  |  |
| Number of Full-time workers | 0.1542 | 1.90 | 0.0924 | 0.68 | -0.1580 | -0.70 |
| Number of Part-time workers | -0.0804 | -0.54 | -0.1795 | -0.79 | -0.4451 | -1.20 |
| Number of University Students | 0.2372 | 1.41 | 0.3996 | 1.01 | 0.4494 | 1.32 |
| Number of Non-Workers | -0.4659 | -2.90 | -0.2595 | -0.78 | -0.4451 | -1.20 |
| Number of Retirees | -0.4996 | -2.30 |  |  | -0.8595 | -1.67 |
| Number of Driving Age School Children | 0.4763 | 4.44 | 0.5084 | 2.92 |  |  |
| Number of Pre-driving School Children not at home | 0.6307 | 12.59 | 0.7923 | 9.01 | 0.8500 | 4.90 |
| Number of Pre-School Children not at home | 0.3148 | 3.59 | 0.4869 | 3.72 | 0.5200 | 2.45 |
| Shopping |  |  |  |  |  |  |
| Number of Full-time workers |  |  | -0.3377 | -2.02 | -0.5624 | -1.92 |
| Number of Part-time workers |  |  | -0.3377 | -2.02 | -0.3736 | -0.75 |
| Number of University Students |  |  |  |  | -1.7086 | -1.65 |
| Number of Non-Workers |  |  | -0.3377 | -2.02 | -0.2524 | -0.46 |
| Number of Retirees |  |  |  |  |  |  |
| Number of Driving Age School Children | -0.0739 | -1.27 |  |  |  |  |
| Number of Pre-driving Age Children | -0.0739 | -1.27 |  |  |  |  |


| Utility Terms | Full-time Worker (FW) |  | Part-time Worker (PW) |  | University Student (US) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coeff | T-Stat | Coeff | T-Stat | Coeff | T-Stat |
| Maintenance |  |  |  |  |  |  |
| Number of Workers | -0.0981 | -1.24 | -0.1923 | -1.42 | -0.1629 | -0.65 |
| Number of University Students | -0.0981 | -1.24 |  |  | -0.5773 | -0.78 |
| Number of Non-Workers | -0.0981 | -1.24 | -0.6033 | -1.62 | -0.1629 | -0.65 |
| Number of Driving Age School Children | 0.0940 | 1.76 |  |  |  |  |
| Number of Pre-driving School Children | 0.0940 | 1.76 |  |  |  |  |
| Number of Pre-School Children | 0.0940 | 1.76 |  |  |  |  |
| Discretionary |  |  |  |  |  |  |
| Number of University Students |  |  |  |  | 0.2747 | 0.55 |
| Number of Driving Age School Children | 0.1498 | 2.36 | 0.2234 | 2.32 |  |  |
| Number of Pre-driving School Children | 0.1498 | 2.36 | 0.2234 | 2.32 |  |  |
| Number of Pre-School Children | -0.1361 | -1.10 | -0.2585 | -1.31 |  |  |
| Eating Out | -0.2861 | -1.97 | -0.3857 | -1.32 |  |  |
| Number of Full-time workers | -0.2861 | -1.97 |  |  |  |  |
| Number of Part-time workers | -0.2861 | -1.97 |  |  |  |  |
| Number of University Students | -0.2861 | -1.97 |  |  |  |  |
| Number of Non-Workers | -0.2861 | -1.97 |  |  |  |  |
| Number of Retirees | -0.2861 | -1.97 |  |  |  |  |
| Number of Pre-driving School Children | -0.0708 | -0.61 |  |  |  |  |
| Number of Pre-School Children | -0.0708 | -0.61 |  |  |  |  |
| Visiting |  |  |  |  |  |  |
| Number of Part-time Workers |  |  | 0.5630 | 1.94 |  |  |
| Number of University Students | -0.3859 | -1.89 |  |  |  |  |
| Number of Non-Workers | -0.3859 | -1.89 |  |  |  |  |
| Number of Retirees | -0.3859 | -1.89 | 0.9409 | 3.54 |  |  |
| Number of Driving Age School Children |  |  | 0.1939 | 1.40 |  |  |
| Number of Pre-driving Age Children (SP,PS) |  |  | 0.1939 | 1.40 |  |  |
| Car Sufficiency |  |  |  |  |  |  |
| No Cars |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =1 |  |  |  |  |  |  |
| Number of Non-Mandatory Tours $=2$ | -0.5024 | -0.89 | -2.4269 | -2.20 |  |  |
| Number of Non-Mandatory Tours >=3 | -0.5024 | -0.89 | -2.4269 | -2.20 |  |  |
| Cars Less than Workers |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =1 |  |  |  |  |  |  |
| Number of Non-Mandatory Tours $=2$ | -0.4768 | -1.53 | -1.1113 | -2.34 |  |  |
| Number of Non-Mandatory Tours >=3 | -0.4768 | -1.53 | -1.1113 | -2.34 |  |  |
| Cars More than Workers |  |  |  |  |  |  |
| Number of Non-Mandatory Tours =1 |  |  |  |  | 0.3197 | 0.68 |
| Number of Non-Mandatory Tours $=2$ |  |  |  |  | 0.3197 | 0.68 |
| Number of Non-Mandatory Tours >=3 | 0.0109 | 0.04 |  |  | 0.3197 | 0.68 |
| Escorting |  |  |  |  |  |  |


| Utility Terms | Full-time Worker |  |
| :--- | :---: | :---: | :---: | :---: |
| (FW) |  | Part-time Worker |
| (PW) |  | University Student |
| (US) |  |  |


| Utility Terms | Full-time Worker (FW)$\text { Coeff } \quad \text { T-Stat }$ |  | Part-time Worker (PW)Coeff T-Stat |  | University Student <br> (US) <br> Coeff T-Stat |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of Observations |  |  |  |  |  |  |
| Likelihood with Constants only | -497 |  |  |  |  |  |
| Final likelihood |  |  |  |  |  |  |
| $\rho^{2}$ w.r.t. zero |  |  |  |  |  |  |
| $\rho^{2}$ w.r.t. constants |  |  |  |  |  |  |

