Progress in the Development of the ADAPTS Dynamic Activity-Based Microsimulation Model

Joshua Auld Kouros Mohammadian

Overview

- Introduction and Motivations
- ADAPTS Framework
- Current work on the ADAPTS model
 - Activity generation
 - Activity planning strategies
 - Attribute planning (destination choice)
 - Activity scheduling
- Discussion / Conclusions

Introduction and Motivation

Issues in Activity-Based Modeling

- 1. Intro
- Framework
- Activity Planning
- 4. Model Specification
- Data source
- 6. Model Results
- 7. Conclusion

- Preset activity priority order:
 - Activities added to schedule and attributes picked in fixed order
 - In other models: activities added in order of assumed priority
 - Does not match observations from data (Roorda et al. 2005)
- Fixed order of attribute scheduling:
 - Ex: Party > Duration > Location > Mode > Time
 - Gives fixed dependencies in the decisions
 - Again, does not match actual scheduling process
 - seen in CHASE, OPFAST, UTRACS (our GPS survey), etc.)
- Scheduling planning dynamics
 - Order of decisions can impact subsequent decisions
 - Impulsive/unexpected events in simulation or scenarios
 - Many have entire schedule generated then executed
- May lead to errors modeling behavioral-based policies

Scheduling Order Example

- 1. Intro
- 2. Framework
- Activity Planning
- 4. Model Specification
- 5. Data source
- Model Results
- 7. Conclusion

Motivation for ADAPTS

- 1. Intro
- 2. Framework
- Activity Planning
- 4. Model Specification
- Data source
- Model Results
- 7. Conclusion

- When and how activity planning decisions are made can impact final daily activity pattern
 - In example, both situations start with same pattern
 - Small policy change creates large differences in pattern, depending only on activity planning
- ADAPTS: adds element of activity planning, to activity generation and activity scheduling
 - Simulation of planning steps
- Account for planning dynamics
 - when is each decision made in relation to other decisions, activities, schedule, etc.
- Represent pattern level changes from impacts of policies on planning dynamics at individual level

ADAPTS Model Framework

Framework - Introduction

- 1. Intro
- 2. Framework
- Activity Planning
- 4. Model Specification
- Data source
- 6. Model Results
- 7. Conclusion

- ADAPTS scheduling process model:
 - Simulation of how activities are planned and scheduled
 - Extends concept of "planning horizon" to activity attributes
 - Time-of-day, location, mode, party composition
- Fits within overall framework of activity-based microsimulation model
 - Constraints from long-term simulation (land-use model)
 - Combined with route choice and traffic simulation
- Models being generated for Chicago region
 - Datasources: UTRACS (GPS) Survey, CMAP household travel survey, CMAP land-use database, Census 2000, CHASE, etc.

Overall Integrated Land-Use Transportation Model Framework

- 1. Intro
- 2. Framework
- Activity Planning
- 4. Model Specification
- 5. Data source
- Model Results
- 7. Conclusion

ADAPTS Simulation Framework

- l. Intro
- 2. Framework
- Activity Planning
- 4. Model Specification
- 5. Data source
- Model Results
- 7. Conclusion

ADAPTS Planner/Scheduler

- ADAPTS planning and scheduling framework
- Handles at each timestep:
 - Generation
 - Planning
 - scheduling
- Generation, planning and scheduling can occur at different times for same activity
- Core of the framework is the Attribute Plan Order Model

Framework: C# Simulation Objects

- 1. Intro
- 2. Framework
- Activity Planning
- 4. Model
 Specification
- 5. Data source
- Model Results
- 7. Conclusion

Completed Components of ADAPTS

- Rest of discussion will focus on core components of ADAPTS which have been completed
 - Activity Generation
 - Activity Planning Strategies
 - Attribute Planning (Destination Choice)
 - Activity Scheduling

Activity Generation

Activity Generation

- Activity generation through set of decision trees
 - Classify HH/Person by socio-demographics
- Generation rates drawn from probability distribution fit at each node
 - Distributions estimated from 7-day CHASE data
 - Fit to Chicago 1-day survey through updating

Activity Generation

- Application to Chicago-region
 - Calibrated to 2007 data
 - Backcast validation to 1990 HHTS
 - Validated by activity-type, HH Type, etc.
- Currently updating to include generation dynamics
 - System of simultaneous hazard equations for generation

Activity Planning Strategies

Activity Planning in ADAPTS

- Activities generated and planned dynamically
- Conditional decision making, dependent on
 - Past history
 - Current plans
 - Situation/resource/capacity/household constraints
- Need to know when activities/attributes are planned

- Activity planning order model
 - General categories of when activity generation and attribute planning occur in the schedule

Activity Planning Order Framework

- 1. Intro
- Framework
- 3. Activity Planning
- Model Specification
- 5. Data source
- Model Results
- 7. Conclusion

- Assign plan horizon to each attribute
 - After activity generated
- Plan order model process
 - Assigns attribute flexibility
 - Get activity plan horizon
 - Attribute plan horizons
- Plan horizons for each attribute based on:
 - Attribute flexibilities
 - Activity plan horizon
 - General activity attributes
 - Socio-demographics, etc.
- Defines the *meta-attributes* of the activity attributes

Planning Models Discussion

- Estimated set of ordinal/multivariate probit models
 - All models have acceptable goodness of fit
 - Significant improvement over null models
 - Generally have parameters significant at 0.05 level
- Determines how activity flexibility/plan horizon impact attribute planning
 - More expected planning/scheduling effort => more preplanning
- Includes policy sensitive variables relating to:
 - Telework and flex scheduling
 - ICT usage rates
 - Generalized travel costs
 - Endogenous scheduling variables (average frequency, duration)

Destination Choice Modeling

Planning Constrained Destination Choice

Destination Choice (continued)

- Choice set formed using plan-constrained prism
 - Importance sampling (on travel time, employment totals) from available zones
 - Clearly requires planning data to determine choice set
- Use variety of Competing-Destinations model:

$$V_{in} = \beta_T T_{in} + \beta_I \ln(I_{in}) + \beta_R R_{in} + \sum_{j}^{J} \beta_j \ln(A_{ij}) + \sum_{k}^{K} \beta_k \ln(E_{ik}) + \sum_{k}^{K} \theta_k C_k + \ln\left(\frac{1}{p(i)}\right)$$

Where,

 A_{ij} = Land use variables

 E_{ij} = Employment variables

 C_k = Competition/Agglomeration factor

p(i) = Probability of zone being selected into choice set

$$C_k = \left(\frac{1}{N_{zone} - 1} \sum_{l \neq i}^{N_z} e_{lk} e^{\frac{-d_{il}}{\gamma}}\right)$$

Destination Choice - Validation

- Model estimated for Chicago using 2007 HHTS data
 - Simulated planning data using plan order model
- Compared to same model with no planning constraints on choice set formation
 - Trip time distribution much closer for plan constrained model
 - Higher aggregate R² (0.602 vs 0.571) over all activities

Activity Scheduling

Scheduling – Overall System

- Rules for adding activity to existing schedule
- Based on conflict resolution model
 - Resolution strategy determines rules followed
- For all situations show below:
 - Determines how schedule is modified
 - Based on available time, act. type, resolution type, etc.
 - Insert new activity or drop depending on results

Scheduling - Conflict Resolution

- Due to dynamic nature of scheduling, conflicts naturally arise
 - Timing, location, resource
- Conflict resolution model chooses strategy for resolving conflict
 - Currently only for timing
 - Uses decision trees
 - Strategies based on demographics, constraints, schedule characteristics, etc.

Conclusion

Discussion and Conclusions

- ADAPTS framework represents dynamics of activity planning
 - Dynamic activity generation (when completed)
 - Conditional attribute planning (from plan order model)
- Plan order model sets when decisions about planning made
 - Correlated responses give more realistic planning order
 - Linked directly to key policy variables
 - Allows conditional attribute planning
- Flexible activity scheduling with conflict resolution
 - No predetermined order of activities entering schedule
- Future work:
 - Integration of plan horizon responses to simulation time
 - Development of rest of attribute models
 - Test impact of planning behavior changes on travel demand
 - Link to traffic simulation/assignment

Thank You! *Questions?*

Funding provided by:
National
Science
Foundation

IGERT
Integrative Graduate
Education and
Research Traineeship

IGERT Ph.D. Program in Computational Transportation Science

Information Technology

Transportation