Adjusting Temporal Demand for DTA: A Practical Method

Michael Florian, Shuguang He, Ido Juran, Michael Mahut, Shane Velan
INRO, Montreal
Innovations in Travel Modeling
Tempe, May 2010

Subarea
Regional Network Abstraction

Subarea
• 18 TAZs
Innovations in Travel Modeling
Tempe, May 2010
Traversal Demand Static Assignment
Find new O-D matrix such that

\[
\min \sum_{\text{counts}} (\text{assigned flows} - \text{counts})^2
\]
Demand Adjustment

Find new O-D matrix such that

$$\min \sum_{\text{counts}} (\text{assigned flows} - \text{counts})^2 + (1-\alpha) \sum_{\text{O-Ds}} (\text{adjusted demand} - \text{seed matrix})^2$$

- links and turns
- multiclass
- time-varying
- (weighted)

weight
$0 \leq \alpha \leq 1$

traversal matrix

Innovations in Travel Modeling
Tempe, May 2010
Adjusted Car Matrix 7:00-7:15
Adjusted Car Matrix 7:15-7:30
Adjusted Car Matrix 7:30-7:45
Adjusted Car Matrix 8:00-8:15
Adjusted Car Matrix 8:15-8:30

Innovations in Travel Modeling
Tempe, May 2010
Adjusted Car Matrix 8:30-8:45
Adjusted Car Matrix 8:45-9:00

Innovations in Travel Modeling
Tempe, May 2010
Adjusted Demand Static Assignment

7:06-9:00
before adjustment
Multiclass Demand Adjustment

Link scatterplot

Y = 0.967496 * X + 62.4003
N: 70
R²: 0.807544

Innovations in Travel Modeling
Tempe, May 2010
Multiclass Demand Adjustment

cars
7:45-8:00
$\alpha = 0.75$

Link scatterplot

$Y = 1.0064X - 9.99726$

N: 70
R²: 0.988936

Innovations in Travel Modeling
Tempe, May 2010
Multiclass Demand Adjustment

cars
7:45-8:00
α = 0.75

Turn scatterplot

Y = 0.935779X + 9.15697
N: 108 R2: 0.947135
Multiclass Demand Adjustment

cars
7:45-8:00
$\alpha = 0.75$

Matrix scatterplot

$Y = 0.970768X + 0.303906$

$N: 16384$
$R^2: 0.949665$
Find new O-D matrix such that

\[
\min \alpha \sum_{\text{counts}} (\text{assigned flows} - \text{counts})^2 \\
+ (1-\alpha) \sum_{\text{O-Ds}} (\text{adjusted demand} - \text{seed matrix})^2
\]

weight
\[\alpha = 0.75\]
Find new O-D matrix such that

$$\min \alpha \sum_{\text{counts}} (\text{assigned flows} - \text{counts})^2$$

$$+ (1-\alpha) \sum_{\text{O-Ds}} (\text{adjusted demand} - \text{seed matrix})^2$$

weight
$$\alpha = 1.00$$
Multiclass Demand Adjustment

cars
7:45-8:00
α = 1.00

Matrix scatterplot

Adjusted Demand

Y = 0.985211X + 0.267443
N: 16384
R²: 0.886344
Initial DTA Results

>600 vehicles waiting

Innovations in Travel Modeling
Tempe, May 2010
Initial Convergence

Innovations in Travel Modeling
Tempe, May 2010
Initial Calibration

Link Scatterplot
- $R^2 = 0.856954$, Slope = 0.830507, Y offset = 137.556

Count 2340
Average flow 1318
Queue Spillback 8:00-8:30

7:30 queue builds at Ebound on ramp

Innovations in Travel Modeling
Tempe, May 2010
Queue Spillback 8:00-8:30

Innovations in Travel Modeling
Tempe, May 2010
Queue Spillback 8:00-8:30

Innovations in Travel Modeling
Tempe, May 2010
Queue Spillback 8:00-8:30

Innovations in Travel Modeling
Tempe, May 2010
Queue Spillback 8:00-8:30
Queue Spillback 8:00-8:30
Queue Spillback 8:00-8:30

Innovations in Travel Modeling
Tempe, May 2010
Queue Spillback 8:00-8:30

Innovations in Travel Modeling
Tempe, May 2010
Calibration: another outlier

Count 1111
Average flow 1981

Link Scatterplot
R Squared=0.856954, Slope=0.830507, Y offset=137.556
Innovations in Travel Modeling
Tempe, May 2010
Dynamic Select-link Analysis

left turns

Innovations in Travel Modeling
Tempe, May 2010
Dynamic Path Analysis

departures
7:30-7:45
Dynamic Path Analysis

departures
7:45-8:00

Innovations in Travel Modeling
Tempe, May 2010
Dynamic Path Analysis

departures
8:00-8:15
Dynamic Path Analysis

departures
8:15-8:30

Innovations in Travel Modeling
Tempe, May 2010
Dynamic Path Analysis

departures
8:30-8:45

Innovations in Travel Modeling
Tempe, May 2010
Dynamic Path Analysis

departures
8:45-9:00
Downstream Bottleneck

V/C > 1.2

static assignment of adjusted demand 7:45-8:00
Car Counts
Dynamic Select-link Analysis

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Select-link Demand for Ebound On Ramp

Innovations in Travel Modeling
Tempe, May 2010
Dynamic Demand Adjustment

Scale down the demand matrix for each demand interval in proportion to the dynamic select-link demand until the spillback is sufficiently reduced.
Calibration: more outliers?
Final Calibration
Mature Convergence
Conclusions

Static demand adjustment
- Check the network coding
- Collect consistent counts for gates, main intersections, ramps
- Do not abuse the seed demand
- Assign the adjusted demand and check V/C

Dynamic demand adjustment
- Follow poorly fitting flows downstream to identify bottlenecks
- Scale down O-D flows causing the bottleneck with dynamic select-link analysis