
Focus Software: Process 

and Results

Jennifer Malm, Suzanne 

Childress, Erik Sabina, DeVon 

Farago, Jerry Vaio, Scott Meeks



Software Goals

•Explainable and understandable

•Replicable and maintainable

•Scalable

•Transferrable

•Distributable

•Upgradable

•Integratable

•Tunable



The Big Picture

Scenarios  / Model 
Structure SQL-
Server

Input / Output     
SQL-Server

DataStore

GUI Request 
Dispatcher

Model 
Engine

DataStore 
Manager

Component

Component

Component

Component

Component

TransCAD

TransCAD



A few design comments

•Breadth-first design

•Runs one model component at a time

•Loosely-coupled services and components

•Easier distributability

•Highly object-oriented code

•Enhances several design objectives

•Database driven

•One of our favorite parts!



Utility function structure: database



Utility function structure: C# classes



Points and zones: database



Output data: database



Running it

•Tests on 1, 2, 4 and 8 processors
•Doubling cores cuts run time in half

•Run time – 48 hrs
•One db server, one code, 4 cores each

•Design effects on run time:
•10 highway time periods, 4 transit.

•2,800 zones, no location choice set selection (yet.)

•“big” OO language (C#)

•Exploring hardware options
•Outsourcing

•In-house computing



Explainable and Understandable



Replicability

•By June 1, 2009

•Developed effective template discrete choice 

component

•Developed full-detail database structure

•By November 1, 2009

•Functional versions of all 27 discrete choice 

components

•“Non-hilarious” results for all of them

•After tour mode choice, tour time of day (a tricky 

one!) took three weeks.



Scalability (a few examples)

•Nowhere in the code do the number of people and 

households appear

•Automatic detection of available processors:



Transferrable

•No non-transportation applications yet, but:

•Software calls a diverse set of components:

•Two simply run TransCAD

•One processes PopSyn outputs

•Two random distribution simulators

•One calculates disaggregate logsums

•One calculates size sum variables

•15 execute logit choice



Distributable

• Currently running on two servers:

• Various tests on various hardware

Code 
Execution

Server 1 ( 4 processors)

Database 
storage and 
queries

Server 2 (4 processors)



Distributable

all 
operations

All 
operations

Jerry’s desktop (4 processors) Suzanne’s or Jen’s  desktop (2 processors)

Suzanne’s or Jen’s desktop (2 processors) Database Server (4 processors)

Code 
Execution

Database 
storage and 
queries



Upgradable

•“Round robin” threading execution upgrade

•Upgrade Class ModelComponentWithThreads

•Change how the threads are queued

•Pass-by-reference copy method for decision-agent-

specific variables:

•Upgrade Copy method in Class 

DecisionMakerSpecificVariable

•Big run time improvement



Integratable

•Point:  to enable seamless integration with other 

systems at DRCOG

•No examples yet, but plans include:

•Search model input and out through DRCOG 

website

•Integrate with DRCOG regional data model



Tunable

•Number of threads

•“Chunks” per thread

•Virtual server cores

•Cloud computing?



Lessons and Conclusions

Caveman version:

•Relational database goooood!

•OO language gooood!

•Erik still not clear on final runtimes!

•DRCOG tribe learn model reeeeel good!

•Learning process hurt head sometimes!

•We learn to fight by standing in middle of 

battle!



Possible Enhancement

•Automate point-based land use.

•Upgrade of the scenario management system

•Location choice set generation and shadow 

pricing.

•Integration with DTA

•Enhanced toll modeling

•Upgrades with new survey data

•Model rollout and distribution enhancements.



Us

Jennifer Malm: jen_s_malm@yahoo.com

Suzanne Childress: schildress@drcog.org

Erik Sabina: esabina@drcog.org

DeVon Farago: devonfarago@yahoo.com

Jerry Vaio: gvaio@camsys.com

Scott Meeks: smeeks@camsys.com


