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Introduction 
The shortest path problem has been extensively studied as a core subroutine for solving a wide 
variety of transportation network optimization problems, for example, traffic assignment and 
network design. Criteria to be considered in the shortest path problem include physical distance, 
travel time, as well as monetary cost along a path, and the corresponding generalized cost 
functions are typically additive. Many recent studies suggest that travel time reliability is an 
important element of a traveler’s route and departure time scheduling. To assist public 
transportation planning agencies on evaluating strategies for improving network-wide traffic 
reliability, advanced traffic assignment tools are required to (1) produce reliability measures and 
(2) represent travel pattern shifts due to the change in system reliability. In addition, emerging 
personal navigation systems and pre-trip planning applications also start to deliver  a richer set of 
route guidance information to assist commuters in finding reliable paths. In order to meet the 
above functional requirements, this study focuses on developing efficient problem reformulation 
and algorithms for solving the most reliable path problem.  



2 

 

A wide range of definitions and models have been proposed to measure and optimize travel time 
reliability. There are several types of travel time reliability measures commonly considered in 
transportation applications: (1) 90th- or 95th-percentile travel time, buffer and planning time 
index, (2) on-time arrival probability, (3) the travel time variation expressed in terms of standard 
deviation or coefficient of variation. In the first type of definitions, by generating the probability 
distribution of the travel time from the historical data, the 90th- or 95th-percentile travel time is 
defined as the travel time within which 90th- or 95th-percentile trips are completed. For travelers’ 
convenience, the buffer and planning time indexes are calculated from the 90th- or 95th-
percentile travel time to suggest the extra travel time that the traveler should buffer to ensure an 
on-time arrival. The second definition uses the percentage of trips that are completed within a 
reasonable buffered travel time (e.g. average travel time plus 20% buffer). The third type of 
definition is also widely used on traveler information provision systems with estimations of 
expected travel time and its variability. Although the travel time reliability measure in terms of 
standard deviation is relatively difficult to communicate directly with travelers, this type of model 
has been well calibrated in many previous empirical studies (e.g. Small [1], Noland et al. [2],  and 
Noland and Polak [3]) and adopted in several traffic assignment models (e.g. Zhou et al., [4]). In 
addition, there are several variants of travel time reliability models being considered in the route 
finding problem. For example, the travel time reliability was modeled as the expected travel time 
and Time at Risk by Lu et al. [5], where the Time at Risk is a combination of expected travel time 
and its standard deviation. Sen et al. [6] proposed their reliability model as a linear combination 
of mean and variance of travel time, and solved as a set of parametric 0-1 quadratic integer 
programs.  

This study adopts the reliability measure as the standard deviation of travel time The most 
reliable path problem under consideration is to find a path that optimizes two objectives: mean 
travel time and its standard deviation: 

 { }min mean varβ+  

The most reliable path problem shown above is quite different from regular multi-objective 
shortest path problems, and there are many fundamental issues to be addressed in order to fulfill 
the requirements for systematic modeling methodologies and efficient solution algorithms.  First, 
incorporating the standard deviation of path travel time leads to a non-linear and non-additive 
disutility function, while the widely-used label correcting or label setting shortest path algorithms 
are only applicable for linear additive objection functions.  Second, the standard deviation term is 
in fact a concave function of path travel time, which cannot be appropriately handled by common 
convex function-based linear approximation techniques.  

Essentially, solving the proposed most reliable path problem needs to address several 
computational issues due to the nonlinear, nonadditive and concave objective function with mean 
travel time and standard deviation as two criteria. There are a number of previous studies 
addressing those aspects individually. Henig [7] presented efficient approximate methods on the 
shortest path problem with two criteria, which are assumed to be quasiconcave or quasiconvex 
utility functions. Scott and Bernstein [8] developed an iterative solution method for the shortest 
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path problem where the value of time function is nonlinear and non-decreasing. In their study, the 
Lagrangian relaxation technique was used to approximate the non-linear objective function. 
Recently, Tsaggouris and Zaroliagis [9] combined the Lagrangian Relaxation and Hull approach 
to solve a non-additive bi-objective shortest path problem with a non-linear, convex and non-
decreasing cost function. For the concave property of cost function, Larsson et al. [10] provided a 
Lagrangian dualization based heuristic algorithm for the concave minimum cost network flow 
problem.  

The remainder of this paper is structured as follows. The next section provides the problem 
statement and proposed two different models for the most reliable path problem: with and without 
link correlation. Then these two models are reformulated and solved using the Lagrangian 
relaxation technique to handle the nonadditive and nonconvex objective functions, while the sub-
gradient method is used for iteratively finding the optimal Lagrangian multipliers.  Finally, this 
paper evaluates the proposed algorithms through numerical experiments on large-scale networks.  

 

Problem Statement and Model Assumptions 

Notations 
For easy reference, we first list all the notations that are used in this paper: 

N = set of nodes 
A = set of links 
p = a feasible path 
m = the number of links in a path 

pc  = the travel time of path p  

pc  = the mean travel time of path p  

i, j = subscript for nodes 
l = subscript for the index of a link in a path, l= 0, …, m-1 

la  = a link in path p, with index number l 

ija  = a directed link from node i to j 

lc  = the travel time of link la , considered as a random variable 

ijc  = the travel time of link ija , considered as a random variable 

lc  = the mean travel time of link la  

ijc  = the mean travel time of link ija  

( )lf c  = the probability distribution function of lc  

( )ijf c  = the probability distribution function of ijc  
2
ijσ  = the variance of link travel time ijc  
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ijx  = a binary variable indicates the selection of link ija  

X = the set of target binary variables { | }ijx ij A∈  

D = set of travel time measurement samples 
n = number of samples in set D  
d = subscript for samples 

,p dc  = travel time of path p in sample d  

,l dc  = travel time of link l in sample d  

,ij dc  = travel time of link (i, j) in sample d  

β  = reliability coefficient 
k = superscript for iterations in sub-gradient method 

Problem Statement 
Let G (N, A) represent a transportation network, where N is the set of nodes and A is the set of 
links. Each link can be denoted either a directed link ija  from node i to j, or an indexed link la  in 

a path p with m links. Accordingly, the travel time of each link is denoted as ijc or lc .. Consider 

binary variable set {0,1}ijx ∈ that indicates the selection of the link ija  for the least travel time 

path, a least travel time problem for a pre-specified OD pair (o, d) can be described as  

 * min ij ij
ij A

z c x
∈

= ∑  (1) 

Subject to the following flow balance constraints 

 
: :

1
0 { , }

1
ij ji

j ij A j ji A

i o
x x i N o d

i d∈ ∈

=⎧
⎪− = ∈ −⎨
⎪− =⎩

∑ ∑  (2) 

The above integer linear program that can be solved using regular label correcting or label setting 
shortest path algorithms (Ahuja et al. [11]).  The desired binary variable set {0,1}ijx ∈ indicates 

the selection of the link ija  for the least travel time path. 

 

In order to incorporate the travel time variability into the objective function, we consider travel 
time of each link (i, j) as a random variable with mean travel time ijc  and probability distribution 

function ( )ijf c . Furthermore, the travel time probability distribution of each link can be 

estimated from the historical travel time data, and it typically depends on a number of factors 
such as link type, volume to capacity ratio and so on. It should be noted that, the actual link travel 
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time is a time-varying variable further depending on time of day, day of week and month of year. 
In this study, we focus on the static shortest path problem and consider link travel times are static 
parameters. The time-varying least travel time problem has been addressed by many studies (e.g. 
Miller-Hooks and Mahmassani [12]). 

This paper considers the following most reliable path problem as an integer non-linear 
minimization problem (P) by combining mean path travel time and its standard deviation:  

 * min var( )ij ij p
ij A

z c x cβ
∈

= +∑  (3) 

Subject to  

 
: :

ij ji
j ij A j ji A

x x b
∈ ∈

− =∑ ∑  (4) 

where 
1
0 { , }

1

i o
b i N o d

i d

=⎧
⎪= ∈ −⎨
⎪− =⎩

represents the flow status for each node i in the network, and β  

is the reliability coefficient that reflects the significance of travel time variability. Commonly it 
can be derived as the ratio of Value of Reliability (VOR) to Value of Time (VOT), in which way 
normalized the reliability into time unit. The reliability coefficient could vary across different 
travelers and different trip purposes (e.g. business trip vs. recreational trip).  

Given link travel time data, the calculation of mean path travel time for a path p is straightforward: 

1

m

p l
l

c c
=

= ∑ , while the variance of path travel time can be expressed as  

 
( )

2 1

2

0

2

1 2 1 20 0 0
1 1

var( ) ( )

... ( , ,..., ) ...
m

p p p p p

m m

l l m mc c c
l l

c c c f c dc

c c f c c c dc dc dc

+∞

+∞ +∞ +∞

= = =
= =

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

∫

∑ ∑∫ ∫ ∫
 (5) 

Obviously, it is computationally intractable to obtain the multi-dimension probability distribution 
function 1 2( , ,..., )mf c c c  for each path p. Thus, two different methods are considered below to 

calculate the path travel time variance with and without link travel time correlation assumptions.  

Model 1: Independent Distribution Based Model 
One simple approach on calculating Eq. (55) is to assume no spatial correlation for travel times 
on different links. That is, by assuming independent distributions among link travel times 

1 2, ,..., mc c c , the expression of variance in Eq. (55) can be reduced to 
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( )

1
2

1 20
0

1

var( ) ( , ,..., )

var( )

l

m

p l l m lc
l
m

l
l

c c c f c c c dc

c

− +∞

=
=

=

= −

=

∑∫

∑
 (6) 

In the above equation, the variance of path travel time is represented as a sum of independent link 
travel time variances, which are relatively easy to obtain from existing historical database. 
Denoting independent link variance as 2

ijσ , the most reliable path problem with independent link 

travel time distribution is then formulated as 

 

2
1

: :

* min

s.t.      

ij ij ij ij
ij A ij A

ij ji
j ij A j ji A

z c x x

x x b

β σ
∈ ∈

∈ ∈

= +

− =

∑ ∑

∑ ∑
 (7) 

Model 2: Sampling-based Model 
In reality, travel times among different links could be highly correlated, e.g. due to the 
propagation of congestion from a downstream link to an upstream link along a freeway or arterial 
corridor. In order to explicitly allow the link correlation in path travel time variable calculation, a 
sampling-based approximation method is used in this study to more systematically formulate the 
most reliable path problem.  

According to the Monte Carlo method, a continuous stochastic problem can be approximated as a 
discrete problem by taking n samples from the random variable: 

 
( )2

,
1

2

,
1 1 1

1var( )
1

1
1

n

p p d p
d

n m m

l d l
d l l

c c c
n

c c
n

=

= = =

≈ −
−

⎛ ⎞= −⎜ ⎟− ⎝ ⎠

∑

∑ ∑ ∑
 (8) 

That is to say, one can take n days’ samples from a multi-day historical database and use them 
directly to calculate the variance of path travel time. By doing so, the correlation among link 
travel times has been automatically represented by the sample set, without explicitly requiring the 
variance-covariance matrix. 

According to the sampling approach in Eq. (88), the most reliable path problem with link travel 
time correlation is formulated as  
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2

2 ,
1

: :

1* min
1

s.t.      

n

ij ij ij d ij ij ij
ij A d ij A ij A

ij ji
j ij A j ji A

z c x c x c x
n

x x b

β
∈ = ∈ ∈

∈ ∈

⎛ ⎞
= + −⎜ ⎟− ⎝ ⎠

− =

∑ ∑ ∑ ∑

∑ ∑
 (9)  

It should be remarked that, the mean travel time for each link in this model can be also derived 

from different samples, i.e.: 
1

1 n
d

ij ij
d

c c
n =

= ∑ . 

Compared to the first model, this sampling-based model needs larger sample size and longer 
computational time to achieve acceptable level of accuracy. For applications lacking sufficient 
link travel time measurements, the first model is still a feasible and compromising option, 
although it might not find the most reliable path that recognizes link travel time correlation.  

Solution Approaches 
In this section we will discuss a Lagrangian Relaxation based solution methodology for finding 
the most reliable path with and without link travel time correlation assumptions.  

Approach for Independent Distribution Based Model 
In the proposed model with the independent distribution assumption, the total travel time variance 
of a path is calculated by summing up the variances of each individual link along the path, as 
shown in the optimization program(77). Since the standard deviation component is non-additive 
along different links of a path, we apply a Lagrangian relaxation-based transformation to 
construct an approximate linear program in order to apply the regular shortest path algorithm for 
additive linear objective functions.  

Lagrangian Relaxation 
To remove the non-additivity on target binary variable x, we first introduce a positive auxiliary 
variable y to the program (77) to move the variance term to a constraint: 

 min ij ij
ij A

c x yβ
∈

+∑  (10) 

s.t. 

 2
ij ij

ij A

x yσ
∈

=∑  (11) 

 
: :

ij ji
j ij A j ji A

x x b
∈ ∈

− =∑ ∑   
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Since ( )U y y= is a concave, monotonically increasing function, in order to use the standard 

Lagrangian Relaxation described in [9], we further relax the equality constraint (1111) and  
substitute it by an inequality: 

 2
ij ij

ij A

x yσ
∈

≤∑  (12) 

Now the optimization program (77) becomes a constrained shortest path problem with a linear 
cost function and a linear constraint for path variance. To further remove constraint (1212), we 
introduce a Lagrangian multiplier 0μ ≥ and bring the explicit linear constraint back to the 
original objective function (1010): 

 2min ij ij ij ij
ij A ij A

c x y x yβ μ σ
∈ ∈

⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
∑ ∑  (13) 

s.t. 
: :

ij ji
j ij A j ji A

x x b
∈ ∈

− =∑ ∑  

The above minimization problem is linear in terms of the targeted binary variable set X, which  is 
referred as a Lagrangian relaxation or sub-problem of the original problem (77). In a Lagrangian 
relaxation solution framework, the original problem P is normally referred as the primal problem 
and the Lagrangian transformation as the dual problem. By re-grouping variables, a Lagrangian 
function is constructed as:  

 ( )2

: :
( ) min :ij ij ij ij ji

ij A j ij A j ji A
L c x y y x x bμ μσ β μ

∈ ∈ ∈

⎧ ⎫
= + + − − =⎨ ⎬

⎩ ⎭
∑ ∑ ∑  (14) 

In the above function, the primal variable x has a linear cost function combined from link travel 
time and weighted link variance. In other words, we approximate the travel time and standard 
deviation combined routing problem (77) (primal problem) as a linear cost function routing 
problem (dual problem), which can be easily solved using label-correcting or label-setting 
shortest path algorithms. For best approximation, the Lagrangian multiplier µ and the auxiliary 
variable y need to be determined wisely so that the gap between the objective value in the dual 
and primal problems can be minimized. 

In equation(1313), to relax the inequality constraint(1212), a non-positive portion was added to 
the objective function. This relaxation shows that for each positive value of the Lagrangian 
multiplier, the corresponding value of the Lagrangian function L(µ) is providing a lower bound 
for the optimal objective function value z* of the primal problem [9]. Therefore, to approach the 
objective value in the primal problem, the best lower bound needs to be determined. Let’s denote 
L* to be the maximum value of L(µ) according to µ, i.e.: 

 * max ( )L Lμ μ=  (15) 
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The difference between the primal optimal value z* and the dual optimal value L* is called the 
duality gap. By achieving L*, the primal variable X calculated with corresponding µ in the dual 
problem will provide an approximate solution for the primal problem(77).  

Dual Function Decomposition 
Since the only constraint in the dual problem is the flow balance constraint about primal variable 
X, for any particular Lagrangian multiplier, the Lagrangian function (1414) can be decomposed 
into and solved by two independent sub-functions: 

 ( ) ( ) ( )x yL L Lμ μ μ= +  (16) 

The first sub-function ( )xL μ  only contains the variable set X:  

 ( )2

: :
( ) min :x ij ij ij ij ji

ij A j ij A j ji A
L c x x x bμ μσ

∈ ∈ ∈

⎧ ⎫
= + − =⎨ ⎬

⎩ ⎭
∑ ∑ ∑  (17) 

This is a linear function for x and thus can be solved by using the shortest path algorithm with 
combined link costs 2

ij ijc μσ+ .  

The second sub-function ( )yL μ  is a minimization problem with respect to auxiliary variable y. 

By calculating the second order derivative of ( )yL μ , it is easy to verify that the second part of 

the dual function 

 { }( ) minyL y yμ β μ= −  (18) 

is a concave function in terms of y. To solve the above single-variable concave minimization 
problem, the feasible region of y needs to be determined, because the optimal value is attained at 
one of the extreme points of the feasible region (e.g. Larsson [10]). 

The auxiliary variable y corresponds to the variance of the path travel time. As illustrated in 
Figure 1, in order to minimize the total path cost, the travel time variance for the most reliable 
path should be no larger than the variance for the least travel time path. Therefore, the feasible 
region of y is can be determined as an interval between zero and the variance of the least travel 
time path.  
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Figure 1: Feasible region of y 

Sub-gradient Method 
To find the optimal Lagrangian multiplier µ that maximizing L(µ), an iterative sub-gradient 
method is used in this study. Suppose the Lagrangian function is differentiable, the search 
direction of µ in the optimization process can be determined from the gradient of L(µ) with 
respect to µ: 

 2( ) ij ij
ij A

L x yμ σ
∈

∇ = −∑  (19) 

Starting from any feasible initial choice of the Lagrangian multiplier 0μ , for any kμ at iteration k, 

the sub-functions (1717) and (1818) are solved and the solutions are denoted as k
ijx and ky , 

respectively. Then we iteratively calculate the updated value of Lagrangian multiplier as follows: 

 1 2( )k k k k k
ij ij

ij A
x yμ μ θ σ+

∈

= + −∑  (20) 

Until the step size parameter kθ is smaller than a marginal bound or the iteration k is larger than a 
pre-defined value.  

As discussed in [9], the selection of step size kθ needs to satisfy: 

 
1

0     and     
k

k j

j

θ θ
=

→ →∞∑  (21) 

In practice, heuristic algorithms are normally used. One popular implemented algorithm is: 
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 2

2

( )k k
k

k k
ij ij

ij A

UB L

x y

λ μ
θ

σ
∈

⎡ ⎤−⎣ ⎦=

−∑
 (22) 

In this expression, UB  is the upper bound of the optimal objective function value *z in the 
primal problem, and kλ is a scalar chosen between 0 and 2, which is for the step size optimization 
problem only.  

Algorithm 
The algorithm for solving a most reliable path problem without link travel time correlation is 
illustrated in Figure 2: 

Step 1: Initialization 

Choose an initial Lagrangian multiplier µ > 0 

Find the travel time and variance for the least travel time path 

Step 2: Solve dual problem 

Solve ( )xL μ  with the shortest path algorithm 

Solve ( )yL μ  by using two extreme points: 0 and variance of the least travel time path 

Step 3: Update Lagrangian multiplier  

Calculate Lagrangian multiplier with Eq. (2020) and Eq. (2222) 

Step 4: Termination rule test 

If  kθ ε<  or maxk K> , terminate program. (ε is minimum step size, maxK is maximum 

iteration) 

Else, go to Step 2.  
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Figure 2: Algorithm for independent distribution based model 

Approach for Sampling-based Model 
In last section we solved the most reliable path search model without travel time correlation. In 
order to take into account of the link travel time correlation, a Monte Carlo based approximation 
method is used to propose the sampling-based model in Eq. (99). In this model, given the same 
transportation network G (N, A), we generate a sample set D with n travel time measurements 
from the same time at the same day-of-week. The sample domain is denoted with the subscript d 
for variables. Similar to the independent distribution based model, because of the non-linear and 
non-additivity of the objective function, a Lagrangian relaxation is applied to solve the sampling-
based model. 

Lagrangian Relaxation 
In order to approximate the minimization problem(99) with a linear optimization problem, we 
implement a two-step Lagrangian relaxation with two sets of auxiliary variables:  

 ,      ij d ij ij ij d
ij A ij A

c x c x w d D
∈ ∈

− = ∀ ∈∑ ∑  (23) 

 2

1

1
1

n

d
d

w y
n =

=
− ∑  (24) 

After relaxing the equality constraints in (2323) and (2424) with inequality ones, the 
minimization problem can be reformulated as  

 * min ij ij
ij A

z c x yβ
∈

= +∑  (25) 

s.t. 
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 ,      ij d ij ij ij d
ij A ij A

c x c x w d D
∈ ∈

− ≤ ∀ ∈∑ ∑  (26) 

 2

1

1
1

n

d
d

w y
n =

≤
− ∑  (27) 

 
: :

ij ji
j ij A j ji A

x x b
∈ ∈

− =∑ ∑  

In this reformulation n+1auxiliary variables are introduced. The variable dw  for each sample d 

represents the difference between the mean path travel time and the path travel time on sample d. 
While the variable y is the average path travel time deviation between samples and the sample 
mean, or the path travel time variance in other words.  

To further remove constraints (2626) and (2727), a set of Lagrangian multipliers, denoted as dμ  

and ν  sequentially, is introduced in order to move the explicit inequality constraints into the 
objective function (2525): 

 

1

2
,

1 1

: :

( ,..., , )

1min
1

            :

n

n n

ij ij d ij d ij ij ij d d
ij A d ij A ij A d

ij ji
j ij A j ji A

L

c x y c x c x w w y
n

x x b

μ μ ν

β μ ν
∈ = ∈ ∈ =

∈ ∈

⎧ ⎛ ⎞ ⎛ ⎞⎪= + + − − + −⎨ ⎜ ⎟ ⎜ ⎟−⎝ ⎠⎪ ⎝ ⎠⎩
⎫

− = ⎬
⎭

∑ ∑ ∑ ∑ ∑

∑ ∑

 (28) 

By regrouping the variables, we will have a clearer view on the components of the dual problem:  

 

1

2
,

1 1 1

: :

( ,..., , )

1min 1
1

            :

n

n n n

d ij d ij d ij d d d
ij A d d d

ij ji
j ij A j ji A

L

c c x w w y y
n

x x b

μ μ ν

μ μ ν μ β ν
∈ = = =

∈ ∈

⎧ ⎡ ⎤⎛ ⎞⎪ ⎛ ⎞= − + + − + −⎨ ⎢ ⎥ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠⎪ ⎣ ⎦⎩
⎫

− = ⎬
⎭

∑ ∑ ∑ ∑

∑ ∑

 (29) 

The dual function (2929) has a linear objective function corresponding to the primal variable X. 
For each link, the cost function is a combination of weighted sample travel times on different 
days. By adjusting the Lagrangian multipliers dμ andν , we may achieve an optimal linear cost 

function that will maximize the dual function so as to best approximate the non-linear objective 
function in the primal problem. 

Dual Function Decomposition 
We decompose the dual function into a set of sub-functions: 
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 1 ,
1 1 : :

( ,..., , ) min 1 :
n n

x n d ij d ij d ij ij ji
ij A d d j ij A j ji A

L c c x x x bμ μ ν μ μ
∈ = = ∈ ∈

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − + − =⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑ ∑ ∑ ∑  (30) 

 2
1

1( ,..., , ) min      
1dw n d d dL w w d D

n
μ μ ν ν μ⎧ ⎫= − ∀ ∈⎨ ⎬−⎩ ⎭

 (31) 

 { }1( ,..., , ) miny nL y yμ μ ν β ν= −  (32) 

The first sub-function(3030) can be easily solved using shortest path algorithms. The second sub-
function set(3131) contains one convex minimization problem for each auxiliary variable dw  and 

can be solved using first-order gradient, i.e.: 

 

1( ,..., , ) 2 0
1
( 1)
2

dw n
d d

d

d
d

L
w

w n
nw

μ μ ν
ν μ

μ
ν

∂
= − =

∂ −
−

=

 (33) 

The third sub-function(3232) is a concave minimization problem for variable y. Since y represents 
the variance of the path travel time, the feasible region is between zero and the variance of the 
path with least travel time, and the minimization point locates at one of the extreme points of the 
feasible region.  

Sub-gradient Method 
The subgradient method is used here as well. The search direction for each Lagrangian multiplier 
is found using following equations. 

 ( ) ( ) 2
1 ,1 1 ,

1

1( ,..., , ) ,..., ,
1

n

n ij ij ij ij n ij ij n d
ij A ij A d

L c c x w c c x w w y
n

μ μ ν
∈ ∈ =

⎛ ⎞
∇ = − − − − −⎜ ⎟−⎝ ⎠

∑ ∑ ∑   

 ( )1
,      

d

k k k k k
d d ij d ij ij d

ij A
c c x w d Dμμ μ θ+

∈

⎛ ⎞
= + − − ∀ ∈⎜ ⎟
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The step size of each iteration k is calculated using heuristic algorithms: 
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Numerical Experiments 
Two illustrative examples are shown below for the proposed two most reliable path models, 
respectively. 

Independent Distribution Based Model 
Suppose an origin-destination pair with three paths available is considered with following path 
travel time data: 

Table 1: Path travel time data for independent distribution based model 

Path  
Mean Travel 

Time  
Travel Time 

Variance  
Travel Time Standard 

Deviation  
Value of Objective 

Function (β=1) 
A 35 0 0 35 
B 29 49 7 36 

C(opt)  31 4 2 33 
 

By simply calculating the values of objective function, it is obvious that path C is the most 
reliable path with the independent distribution based model.  Figure 3 shows the relationship 
between the Lagrangian multiplier and the value of objective function. 
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Figure 3: Solution results for independent distribution based model 

When the Lagrangian multiplier equals to 31.552, path C is the optimal solution for the dual 
problem, which is also the most reliable path as in the primal problem. Note that, there still exists 
a duality gap between primal and dual problems, due to the approximation nature of the 
Lagrangian relaxation method.  

Sampling-based Model 
In this numerical example, an origin-destination pair with two possible paths is considered. Each 
path is constructed with two links. Four-day samples are given in Table 2. 

Table 2: Sample data for sampling-based model 

Link  Day 1  Day 2  Day 3  Day 4  
 Mean Travel 

Time 
Travel Time 

Variance  
A1  2  1  2  2  1.75  0.25  
A2  1  2  1  2  1.5  0.33  
B1  2  2  1  1  1.5  0.33  
B2  2  2  1  1  1.5  0.33  

 

It is easy to verify that path A is the most reliable path (Table 3): 

Table 3: Path travel time data for sampling-based model 

Path  Day 1  Day 2  Day 3 Day 4 
Mean 

Travel Time
Travel Time 

Variance  
Value of Objective 

Function (β=1)  

A (opt)  3  3  3  4  3.25  0.25  3.75  

B  4  4  2  2  3  1.33  4.15  

31.552
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The sampling-based model can be solved with the optimal value for the dual problem is 3.15. 
Under the optimal value set of Lagrangian multipliers, the dual problem was solved with solution 
of path A. In Figure 4, we plotted the change of dual function value according to Lagrangian 
multipliers (when 1 2 3 4,μ μ μ μ= = ) 

 

Figure 4: Change of dual function value according to Lagrangian multipliers 

 

Conclusions and Further Study 
This study proposed two models for the most reliable path problem with and without link travel 
time correlation. Then Lagrangian Relaxation based solution approaches and algorithms are 
provided for each model to solve the most reliable path problem under different assumptions. The 
illustrative examples show that by solving the dual problems, we can approximate the optimal 
solution for the primal problems.  
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