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1. Introduction 
Although activity-based approach to travel demand modelling was introduced three decades ago, 
the conventional trip-based models are still in use for practical policy investigation in almost 
everywhere with very few exceptions. The main reason of such failure is the lack of 
comprehensive modelling framework with consistent behavioural assumptions that can 
completely replace well-structure trip-based four-stage model. Many issues related to the 
modeling framework, such as the concept of activity utility, application of so-called rules, 
modeling time frame (daily versus weekly), and time discretization are still under debate in the 
research community. The only significant consensus that has been apparently reached so far is 
the recognition of two general components for an activity-based travel demand model: the 
activity generation component and the activity scheduling-rescheduling component (Habib and 
Miller, 2009). There is now significant interest among researchers in capturing the dynamic 
behavioural process of these two components within comprehensive modelling framework under 
consistent behavioural assumption, e.g. Random Utility Maximization (RUM). Habib and Miller 
(2008) presented RUM-based models of activity generation processes. However, to date no such 
unified econometric model is available for the activity scheduling process. In an effort to address 
this issue, an econometric model for the activity scheduling process based on RUM is proposed 
in this paper.  
 
The proposed modeling framework exploits the RUM-based approach to modeling activity 
scheduling process by considering the dynamics of the time budget constraint over the course of 
a day. The unique feature of the proposed model is that it does not need to discretize the time. 
Econometrically the proposed model is a dynamic RUM-based Joint discrete continuous model. 
For empirical investigation, the proposed framework is applied for weekend activity scheduling 
using 2002–2003 CHASE (Computerized Household Activity Scheduling Elicitor) survey data 
collected in Toronto, Canada. 
 
2. RUM-Based Activity Scheduling Model 
Let us consider that an individual, i, at a particular point in the day is to choose an activity type 
and corresponding time expenditure, tj. In expending time for the chosen activity, however, the 
individual faces a time budget limitation. This time budget limitation is not constant throughout 
the day. The day begins with a 24-hour time budget limitation, which is gradually reduced with 
the number of activities performed over the course of the day. The remaining time budget at any 
point of scheduling an activity is the left over time after all previously performed activities have 
been completed. While executing an activity, i.e., defining the duration of a specific activity, the 
individual trades off between time expenditure to the chosen activity versus total time left over 
for all other activities to be completed in the balance of the day. As we do not know for certain 



the causes and factors that influence the individual’s tradeoffs in choosing alternative activity 
types and time expenditures out of a limited time budget, it is reasonable to consider the 
assumption that the utility associated with activity type and time expenditure includes random 
elements. Hence, the utility maximizing approach to model activity type choice and time 
expenditure choice is really a Random Utility Maximizing (RUM) approach. Addressing the 
facts that the time budget decreases as the day progresses and that the scheduling of any 
particular activity type is affected by what activities the individual already completed in a given 
day ensures that the method will capture the true behavioral dynamics of the activity scheduling 
process. In the context of such a situation the choice of a given activity type at any point in time 
influences expenditures of the limited amount of time from the left over time budget, and vice 
versa.  

 
Figure 1: Dynamic Discrete-Continuous Approach to Model Activity Pattern Formation 
 
Figure 1 presents the schematic diagram of such a prototype example of the activity scheduling 
choice process. This is an example of a single day modeling framework. In the case of a multi-
day scheduling process the end of day activity of the previous day is regarded as the first activity 
of the following day. However, in the case of a single day (a 24-hour time span) model this may 
or may not be true. In this paper we are presenting a single-day activity scheduling model, where 
the scheduling process begins at midnight (t=0) and continues until the end of the day. For a 24-
hr modeling timeframe such temporal referencing is unavoidable, even though it creates left and 
right censoring issues for the first and last activities. However, beginning at the reference time 
(t=0) different people might perform different numbers and types of activities before the end of 
the day and thereby may have different types of activity patterns. The proposed approach does 



not consider different activity patterns as alternatives, rather it models the scheduling process, so 
that the activity pattern evolves out of the dynamic scheduling process.  
 
3. Econometric Model Formulation 
From a modeling point of view the challenge is that the dynamics of activity scheduling and 
correlation between activity type choice and corresponding time allocation are sufficiently 
captured in the RUM-based model formulation.  
 
3.1 Formulation of Utility Function 
let us assume that the utility function of the individual person, i, for the j alternative activity type 
choice is: 

AjxVU jjjjjj ,.........3,2,1; =+=+= εβε       (1) 
Where Vj is the systematic utility, xj is a set of explanatory variables, βj is corresponding 
parameter vector and εj is the random term. Similarly, let us assume that the total direct utility 
function of the same individual for time expenditure, (tk) in chosen activity is (Bhat, 2008): 
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Here k=1 indicates the chosen activity and k=2 indicates the remainder of the amount of time 
(the composite activity) under the available time budget. The component, exp(ψkzk+ εk

/), is the 
baseline utility function. In the baseline utility function, zk indicates a vector of explanatory 
variables; Ψk indicates a vector of coefficient corresponding to zk; and ε/

k is the unobserved 
random error component of the random utility function. Among other components of the utility 
function, αk is the satiation parameter and γk is the translation parameter. If the total time budget 
available is given by T, then the time allocation decision becomes an optimization problem under 
time budget constraints: 

Ttt cj =+             (3) 
Here the subscript, j, indicates the time allocated to the current chosen activity while c indicates 
the time left over for the composite. By using the Lagrangian function we get: 
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Here λ is the Lagrangian multiplier. According to the first-order Kuhn-Tucker optimality 
condition (Kuhn and Tucker, 1951), the generalized expression can be written as:  
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Considering the composite activity as the reference activity (k=c) for time allocation and given 
the circumstance that composite activity time allocation is a non-zero value, we can specify λ as 
a function of the composite activity function: 
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Substituting λ in the Kuhn-Tucker optimality conditions we can specify that for a case of tj >0: 
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Taking the logarithm of both sides: 
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The above condition of equality applies to an expenditure of tj amount of time on the given 
activity. Similarly, for the case where t < tj  

////
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Here, the systematic utility component of activity time allocation is 
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Now to derive the probability function of spending a specific amount of time, (t2), we can further 
modify Equation (8) (Bhat, 2008) 

jjccj

jjccj

ttforVV

ttforVV

<−<−

=−=−
////

////

εε

εε
        (9) 

3.2 Assumption of Error Term Distributions and Deriving Probability Distribution Functions 
According to RUM theory, an alternative activity, j, will be chosen if the utility of that 
alternative activity is the maximum of all considered alternatives. 
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Let us assume that the random variable, εj, has the IID Type I Extreme-Value distribution with a 
mean value of 0 and a scale parameter of 1. Hence, the implied cumulative distribution of the 
random error term of the chosen alternative, F(εA), can be written as (Ben-Akiva and Lerman, 
1985; Lee, 1983; Train, 2003):  
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For the time allocation model of chosen activity, as shown in Equation (9), let us assume the 
similar distribution assumption for the random error component, ε/

j, to be an IID Type I Extreme-
Value distribution with a mean value of 0 and a scale parameter of σ. Since the time allocation 
follows the discrete activity type choice, the time allocation is concerned with two alternative 
options (the chosen activity and the composite activity). According to RUM theory, (considering 
the time budget constraints and the Kuhn-Tucker optimality condition), the time allocation, tj, to 
the chosen activity depends on the condition shown in Equation (9). As mentioned above, the 
difference between two IID Extreme-Value random terms is logistically distributed. Moreover, 
the probability distribution function (PDF) and cumulative distribution function (CDF) of ε/

j are 
given by (Johnson et al., 1995): 
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To ensure model identification, the specification of V/
ji and V/

ci can be further specified as (Bhat, 
2008): 

)ln()1(

1ln)1(

/

/

cc

j

j
jjj

tV
and

t
zV

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+=

α

γ
αψ

      (13) 

Here V/
ci indicates the composite activity for the corresponding chosen activity type under 

remaining time budget constraints. Now, according to the change of variables theorem, the 
probability distribution function (PDF) can be determined as follows: 
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And 

( )
1//

/

1//

)(
exp1)(

)(
exp1Pr

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
+=∴

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
+=<

σ
ε

σ

jc
j

jc
j

VV
F

VV
tt

        (15) 

 
3.3 Joint Probability of Activity Type Choice and Time Allocation 
For joint estimation of RUM-based activity type choice and time allocation model, let us 
consider that the transformed error terms are bivariate normal distributes. As per Lee (1983), the 
transformed error terms are: 
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These transformed error terms are correlated with correlation factor ρjt: BVN[J1(εj ), J(ε/
j), ρjt]. 
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Based on the above formulation, the likelihood function, Li, of an individual observation, i,, can 
be written as: 
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Here Dji is a binary indicator variable for the chosen alternative activity. Now if we consider the 
sequence of activity selection and corresponding time allocation, i.e., the activity scheduling process for 
24-hour time period, the joint likelihood function of the complete schedule of an individual, i,, becomes: 
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Here S is the total number of activities performed in the 24-hour time period. Now, if we have a 
sample of observation with sample size, N, the joint likelihood function for the sample, L, 
becomes: 
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This expression is a likelihood function of a dynamic RUM discrete-continuous model. It is of a 
closed form and can be estimated using classical Maximum Likelihood Estimation (MLE) 
algorithms.  
 
4. Data for Empirical Investigation 
 
CHASE survey data from the first wave of the Toronto Travel-Activity Panel survey 
(TAPS) are used in this paper for empirical modeling of weekend activity scheduling (Doherty et 
al, 2004). The CHASE survey was conducted in Toronto in 2002-2003 among 426 individuals in 
271 households. After cleaning the dataset for missing information, a total of 423 individuals 
from 264 households were selected for the sample to estimate the empirical model. In this dataset 
activities are classified into 9 general types: Basic Needs, Work/School, Household Obligation, 
Drop/Pick, Shopping, Recreational, Social and Other. Now, if we define the scheduling of an 
activity type at any point in time as a scheduling cycle, then the observed weekend schedules are 
composed of a minimum of 3 cycles and a maximum of 30 cycles and the average number of 
scheduling cycles is 12.  
 
5. Empirical Model of Weekend Activity Scheduling 
 
The modeling begins with activity type choice at the beginning of the day, and the corresponding 
time expenditures are monitored. At the end of the first activity, the same process of type 
selection and corresponding time expenditure follows until the end of the day. The process of 
choosing an activity and consequent time expenditure may be referred as scheduling steps or 
scheduling cycle. At every scheduling step in the continuous time expenditure model component, 
we consider the trade-off in time expenditure to the specific chosen activity type, with respect to 
the leftover time for the composite activity. 
 
The estimated model parameters are presented in Table 1. Several types of variables are 
considered in the model estimation process. These include socio-economic, residential location, 
transportation system performance, and activity specific attributes. The complicated structure of 
the model and the intention of joint estimation of a dynamic 24-hour activity scheduling process 



posed a significant challenge in parameter estimation for the given sample of data. However, 
surprisingly, it was found that the estimation process is fairly efficient and a large number of 
parameters (106 parameters) can be estimated using even a small sample. This is an indication of 
the behavioural validity of the modeling structure. It proves that the econometric modeling 
structure fits well with the observed dynamic scheduling formation process.  
 
A series of specifications were tested and, after removing insignificant parameters in different 
combinations of variable specifications, the final specification (presented in Table 1) was 
reached. In terms of variables, similar variables entered into the systematic part of the activity 
type choice utility function and the baseline utility function of the continuous time expenditure 
model component. In addition to the accommodation of self-selection effects in activity type 
selection for scheduling and corresponding time expenditure, an unrestricted correlation between 
unobserved factors influencing activity type choice and time expenditure is accommodated. The 
goodness-of-fit of the estimated model is calculated using the adjusted rho-square value of 0.1, 
which is reasonable for such a complicated model structure.  
 
6. Direction for Future Research 
  
Future application of this modeling framework for weekday or complete weekday-weekend 
scheduling behaviour will be explored. Finally, many variables related to activity location and 
inter-household interactions are incorporated as exogenous variables in this paper. It is important 
to incorporate activity location choice within this modeling framework. Similarly, inter-
household interactions and travel mode choice (if a trip is necessary in order to arrive at the 
location of the activity) are also important. It is understood that integration of the activity 
scheduling model with an activity generation model would resolve issues related to modeling 
timeframe (typical day versus week-long model). All of these factors pose methodological 
challenges and hence are taken into account in recommendations for further research. 
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Table 1: Estimated Parameters of Weekend Activity Scheduling Model 
Activity type Choice Model Component
Variables Activity Type Parameter t-Statistics
Constant

Household Obligations -2.1392 -5.155
Drop off/Pick up -3.6148 -22.471
Shopping -3.4814 -19.992
Services -3.6015 -12.206
Other -1.4744 -2.197

Star Time in Hours from Mid Night
Work/School -0.1055 -9.778
Drop off/Pick up -0.0238 -1.591
Services -0.0414 -1.861
Recreation/Entertainment 0.068 11.61
Other 0.0536 4.858

Number of Activities already Performed from beginning of the day
Basic Needs -0.0934 -11.99
Work/School 0.0838 4.73
Drop off/Pick up 0.0462 2.127
Shopping 0.0568 3.708
Services 0.0554 1.689
Social 0.0844 5.98

Total Travel Time (Minutes) Required to go the Activity Location from the previous ActivityLocation
Basic Needs -0.0716 -22.228
Work/School 0.0065 3.557
Household Obligations -0.0502 -12.548
Recreation/Entertainment -0.0301 -11.021
Other -0.0272 -5.435

Household Size: Number of People in the Household
Work/School -0.1001 -2.629
Household Obligations -0.09 -2.742
Shopping -0.0746 -1.739
Recreation/Entertainment -0.1511 -6.723
Social -0.2036 -5.246
Other -0.1678 -3.678

Logarithm of Age in Years
Work/School -0.4985 -9.374
Household Obligations 0.242 2.265
Recreation/Entertainment -0.583 -19.243
Social -0.9811 -13.203
Other -0.4025 -2.349  

 
 



Table 1 (Continue) 
Gender: Male

Work/School 0.3301 3.913
Household Obligations -0.5607 -7.669

Logarithm of Yearly Income in Canadian Dollars (2002-2003)
Work/School 0.0276 1.896
Household Obligations -0.0246 -2.377
Services -0.0328 -1.422
Social 0.0426 2.152
Other -0.0458 -2.738

Number of Automobile in Household
Recreation/Entertainment 0.0943 2.206

Employment Status: Non-Full Time Job
Household Obligations 0.1645 2.147
Recreation/Entertainment 0.1167 1.867
Social 0.3476 2.899

Number of Children in Household
Work/School 0.0808 1.501
Household Obligations 0.2999 7.411
Drop off/Pick up 0.3959 8.791

Time Expenditure Model Component
Constant

Basic Needs -1.8765 -5.583
Star Time in Hours from Mid Night

Work/School 0.0355 1.95
Household Obligations 0.0441 2.965
Drop off/Pick up 0.3274 10.362
Shopping 0.1742 5.58
Services 0.1753 2.251
Recreation/Entertainment 0.3276 22.311
Social 0.2699 9.087
Other 0.1768 9.427

Number of Activities already Performed from beginning of the day
Basic Needs 0.1509 17.353
Household Obligations -0.0516 -2.532
Drop off/Pick up -0.0806 -2.144
Social -0.0711 -2.209  

 
 
 
 
 
 
 



Table 1 (Continue) 
Total Travel Time (Minutes) Required to go the Activity Location from the previous ActivityLocation

Household Obligations 0.0104 2.492
Drop off/Pick up 0.0513 6.057
Shopping 0.0517 5.217
Services 0.0482 4.001
Recreation/Entertainment 0.0102 4.469
Social 0.012 3.707
Other 0.0194 2.659

Household Size: Number of People in the Household
Work/School 0.1257 3.056
Household Obligations -0.4742 -10.303
Drop off/Pick up -0.2259 -3.044
Recreation/Entertainment -0.1875 -5.985

Logarithm of Age in Years
Basic Needs -0.5918 -6.335
Work/School -0.8989 -10.003
Drop off/Pick up -3.7314 -18.392
Shopping -2.8777 -14.043
Services -2.2708 -7.123
Recreation/Entertainment -2.3568 -23.922
Social -1.7052 -12.407
Other -2.0626 -14.248

Logarithm of Yearly Income in Canadian Dollars (2002-2003)
Basic Needs 0.0576 6.154
Work/School 0.0348 1.624
Household Obligations -0.1508 -11.12
Services -0.0598 -1.416
Recreation/Entertainment 0.036 2.565

Number of Automobile in Household
Household Obligations -0.2229 -2.752
Recreation/Entertainment 0.2225 3.488

Logarithm of Duration (Years) of Living in the City
Household Obligations -0.5758 -11.314
Shopping 0.1902 1.67
Recreation/Entertainment 0.1383 2.933
Other 0.2402 2.388  

 
 
 
 
 
 
 



Table 1 (Continue) 
Employment Status: Non-Full Time Job

Work/School -1.0015 -7.129
Social -0.7831 -4.078
Other -0.6725 -3.352

Number of Children in Household
Household Obligations 0.2439 3.842

Satiation Parameter
Constant

Work/School -0.5267 -7.774
Household Obligations -0.2286 -8.922
Drop off/Pick up -0.8955 -18.893
Shopping -0.7234 -14.907
Services -0.8185 -4.594
Recreation/Entertainment -0.696 -14.596
Social -0.5025 -4.942
Other -0.3139 -6.312

Star Time in Hours from Mid Night
Work/School 0.0215 3.983
Services 0.0234 1.84
Recreation/Entertainment 0.0285 10.926
Social 0.0271 4.551

Correlation Coefficient Between Activity Type Choice and Time Expenditure
Constant -0.1942 -8.419

Loglikelihood of Full model -57501.158
Loglikelihood of Constant‐Only Model -63732.032
Adjusted Rho‐Square Value 0.1  
 


