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INTRODUCTION 

Increased auto dependence has raised many societal concerns such as physical inactivity, 

air pollution, climate change, and increased traffic congestion. In order to address these 

concerns, policy makers around the world are seeking strategies that would encourage 

people to drive less and walk/bike more (U.S. Department of Health and Human 

Services, 1996; Sallis et al, 2004). In particular, many are interested in identifying the 

most promising built environment (BE) design elements to promote active travel. This 

policy interest raises two requirements on travel modeling.  

First, given that a policy variable may have substitutive, complementary and synergistic 

effects between different modes of transportation (Guo et al, 2007), the travel outcome of 

the policy variable on various modes need to be modeled simultaneously. This has been 

accomplished in only a few past analyses of trip frequencies. For example, Guo et al 

(2007) adopted a bivariate ordered probit model structure to account for intra-personal 

correlations between motorized and non-motorized trip frequencies. The bivariate 

structure was shown to outperform a pair of independent ordered probit models. In Cao et 

al. (2006), trip frequencies of automobile, transit and walking were regressed against BE 

and other factors using a seemingly unrelated regression (SUR) model to account for 

correlations among the mode-specific linear regression. No test statistic was provided in 

the study to compare the model’s goodness-of-fit against independent regressions. 

The second modeling requirement arises from the recognition that people travel in shared 

space. As stated in Tobler’s first law of geography: “Everything is related to everything 

else, but near things are more related than distant things.” (Tobler, 1970, p.236). Thus, 

individuals located closer to each other are likely to share similarly in their travel 

environment (this could be the physical or the social environment).  Failure to explicitly 

account for this spatial dependency, or spatial correlation, could lead to biased estimation 

of policy impact on travel behavior.  To the best of the authors’ knowledge, no past 

studies have examined this issue of spatial dependency in the context of joint motorized 

and non-motorized travel modeling. 
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This paper aims to enhance public investment decision-makers’ ability in identifying 

effect walking/biking promotive strategies by developing an econometric model capable 

of meeting the abovementioned requirements.  Specifically, the Spatial Seemingly 

Unrelated Regression (SSUR) model first proposed by Anselin (1988) is adopted to 

jointly model individuals’ daily Vehicle Miles Traveled (VMT) and Miles Walked/Biked 

(MWB) as a function of BE factors while controlling for a wide range of additional 

variables. Here, VMT and MWB are chosen as measures of travel outcome because 

transportation investment project costs (such as construction and operational costs) and 

benefits (such as crash reduction, emission reduction, calories burnt) are commonly 

measured in terms of miles traveled. Choosing VMT and MWB as the model outcome 

variable would allow policy makers to assess the return on their investment in a relatively 

straight forward manner. 

MODEL STRUCTURE  

The SSUR model – first proposed by Anselin (1988) – is a spatial analogue of serial 

autocorrelation in the intra-equation disturbances of a time series model. In this study, the 

travel model is specified to include the following two equations for each observed 

individual  , : n Nn K1=

nnnn ef += βX1    

nnnn vf += αY2  

where  is the daily MWB by person ;  is daily VMT by person ;  and  

are vectors of regressors that describe the traveler, neighborhood, and travel day 

characteristics; and  are the corresponding vectors of model parameters to be 

estimated; and  are the disturbance terms. This system of equations can be expressed 

by a stacked model: 
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1μWee += 1λ  

2μWvv += 2λ  

or more parsimoniously as: 

εZΔh +=  

μλWεε +=  
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The error terms in the above system of equations follow a spatial autoregressive process 

within each equation (with a different autocorrelation coefficients 21,λλ ), as well as being 

correlated between equations. The spatially dependent error vector ε  can be considered 

as a transformation of the independentμ , as: 

μλWε 1)( −−= I  

In the above specification of SSUR model, μ  would be assumed to satisfy the following 

conditions:  

0μ =][E , and  

I'.μμ 21 o12][ σ=E ,  

It follows that the error covariance matrix Ω takes the following form: 

Ω = I)B'B(Σεε ⊗=]'.[E , 
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The SSUR model was chosen over the SUR model (consisting of a system of two 

independent linear regression models) for two reasons. First, the SSUR structure allows 

the residual terms in the two equations to correlate with each other. This accounts for any 

unobserved correlation between an individual’s MWB and VMT on a given day. Such 

correlation could arise from, for example, personal attitudes towards environmental 

conservation that our survey data was unable to capture. Second, the SSUR structure 

accounts for the possible spatial correlation across observations about individual 

travelers. Failure to account for such inter-equation and inter-observation correlation 

effects could lead to erroneous estimation results (Anselin, 1988). The similarities and 

differences between a SSURE model and a SUR model are summarized in Table 1 

below. 

 

Table 1. SUR vs. SSUR model structure 
Characteristic SUR model SSUR model 
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Spatial error 
dependence None 

1μWee += 1λ  

2μWvv += 2λ  

Parsimonious 
definition εZΔh +=  
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Error-covariance 
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DATA  

Dane county, located in the southeastern part of Wisconsin, was chosen as the study area 

for this paper. Our primary source of travel data was the Wisconsin add-on sample of the 

2001 National Household Travel Survey (NHTS), which contained all the trips made by 

members of each sampled household on a single day. Each household’s residential 

location as well as the trip origins and destinations of each recorded trip were geo-coded, 
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allowing for a high resolution spatial analysis. Distances of observed trips were estimated 

based on the shortest paths on the network. For each automobile trip, the distance 

traveled was divided by the occupancy rate to give the equivalent person vehicular miles 

traveled (PVMT). The PVMT were subsequently summed up for each individual to give 

the daily VMT. Similarly, the distances of all biking and walking trips made by the same 

individual were summed up to give that individual’s daily MWB. The VMT and MWB 

formed the dependent variables for subsequent analyses. 

In addition to the 2001 NHTS data, a number of other data sources were used to derive 

three groups of environmental variables: (a) neighborhood measures, (b) regional 

accessibility measures, and (c) weather measures. The neighborhood measures were 

computed by first constructing 1/4-mile and 1-mile network buffers around each sampled 

household to represent two alternative ‘neighborhood’ definitions of the households (see 

Guo and Bhat, 2007, for a discussion on operational definitions of neighborhoods). The 

census, land use, and transportation network data were then overlaid onto these network 

buffers to obtain neighborhood-level measures of social-demographic distribution, land 

use coverage by type, land use mix, and transportation network characteristics. The 

inclusion of regional accessibility measures was motivated by our belief that an 

individual’s travel amount and mode preference depend not only on the environment 

surrounding his/her residence, but also how the residence relates spatially to the rest of 

the urban area. To compute the weather measures, each residence in the sample was 

linked to the closest NCDC precipitation and climate station using Euclidean distance 

measures.  Maximum and minimum temperatures, as well as total daily precipitation, 

were extracted for each individual’s survey day from his/her corresponding precipitation 

and climate station. A set of dummy variables were also derived to indicate whether the 

surveyed date fell on the weekend and which season to account for any temporal 

variations in travel. 

Our final sample included 2487 persons, each associated with the two dependent 

variables and a rich array of person, household, and environmental measures as 

explanatory variables for SSUR model estimation. Also need for model estimation is the 

weight matrix, . In this particular empirical application, W  is defined using the W
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inverse Euclidean distance between sampled households. For each household, the inverse 

distance to the other household is taken as weight provided if they are within a distance 

of two miles. 

MODEL ESTIMATION  

The above described data were used to estimate a SUR model and a SSUR model. The 

generalized least squares (GLS) estimator for the unknown parameters in the 

conventional SUR model is given by: 

[ ] .)('])('[''ˆ 111111 hIΣZZIΣZhΩZZΩZΔ ⊗⊗== −−−−−−
 

The ML estimation of the SSUR model entails an iterative approach to solve for , Σ λ  

and parameter estimates as outlined by Anselin (1988) and described below. 

Step 1. Estimate each equation using the ordinary least squares method to obtain the 

initial set of equation specific residuals e and v . 

Step 2. Given  e and v , estimate λ  by optimizing the concentrated log likelihood 

defined below:   
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Step 4. Use the Σ  from the previous step as the starting value in estimating a 

standard SUR model on spatially transformed h  and z  given by: 

λW)h(Ih* −= , and 

λW)z(Iz* −= . 

The GLS estimates at this step for the spatially transformed variables are 

given by: 
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Step 5. If the parameter estimates did not converge, new residuals are obtained using 

the current parameter estimates from step 4 and λ  is solved from the 

following simultaneous non-linear equations:  
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Step 6. With these new values of λ , new estimate for Σ  is derived using the same 

expression as in step 3 but substituting the OLS residuals with the current 

SUR residuals. 

Step 7. Go back to step 4 and continue the iterations until the convergence criterion 

is met in step 5. 

RESULTS 

The estimation results of both the SUR and SSUR models are reported in Table 2. Due to 

word limit considerations, parameter estimates for the exogenous variables are not 

individually discussed here. Rather, the discussion below focuses on the comparison 

between the two models. 

First of all, the estimation results do not suggest any dramatic change in the magnitude of 

the various parameter estimates. However, many of the person characteristics and some 

BE variables appear to have lower statistical significance in the SSUR model than in the 

SUR. The two BE variables (retail accessibility and length of no sidewalk)  that appear to 

be the most effective biking/walking-promotive in SUR model are also statistically 

significant in the SSUR model, suggesting their potential in simultaneously promoting 

biking and walking along with decreasing driving.  

With regard to the overall fit of the model, SSUR has a higher system r-squared (0.15 vs. 

0.12).  This better fit of SSUR model can be explained on account of addressing the 

significant spatial autocorrelation effect in the sample. Teasing out spatial autocorrelation 

may have also led to the reduced cross-equation correlation between the error terms. As 
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shown in Table 3, there is a significant change in the variance matrix ( ) and slight 

decrease of the cross equation correlation between SUR and SSUR model.  

Σ
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Table 2. SUR and SSUR model estimation results 

Coeff. z-stat Coeff. z-stat Coeff. z-stat Coeff. z-stat

Person/Household/Trip Day Characteristics
Person is employed 0.1663 2.976*** 14.4811 9.583*** 0.0610 0.894 16.9346 7.994***
Person is young (17 to 30 years old) 0.2255 2.929*** -- -- 0.1271 1.36741
Person is Caucasian 0.2729 2.761*** -- -- 0.2582 2.172**
Person holds a driving license -- -- 11.6439 12.446*** 10.5879 8.136***
Person has a degree (Bachelor’s or higher) -- -- 2.3258 3.570*** 2.0657 2.281**
Number of bicycles owned by household 0.1480 8.309*** -- -- 0.1452 6.524***
Household has no car 0.3548 1.803* -- -- 0.0439 0.186
Family income per year (in $10,000) -- -- 0.2956 2.266** -0.1229 -0.661
Number of cell phones in household -- -- 0.8638 2.806*** 1.5234 3.480***
Housing type is either an apartment or a  dormitory 0.1704 1.985** 2.2296 2.495** 0.1968 1.800* 2.1285 1.578
Lowest temperature on travel day 0.0073 4.805*** -- -- 0.0066 3.609***
Travel day is on a weekend -- -- -6.8482 -2.343** -13.1987 -3.397***
Built Environment Characteristics
Regional factors 
Rural setting -- -- 1.3241 1.553 0.9449 0.721
Retail accessibility 0.0399 3.341*** -0.5785 -3.438*** 0.0437 2.693*** -0.0145 -0.053

interacted with individual’s work status -- -- -1.2072 -5.624*** -1.7220 -5.601***
Neighborhood socio-demographic composition
% high income households in neighborhood – 1 mile buffer -0.9233 -3.846*** 9.7954 3.561*** -0.8449 -2.767*** 15.9405 3.782***
Household density (per acre) – ¼ mile buffer  -- -- 0.2823 2.833*** 0.2084 1.167
Neighborhood land use characteristics
Land use mix – 1 mile buffer -0.5786 -3.466*** -6.0547 -2.874*** -0.3574 -1.684* -10.0319 -3.207***

interacted with vehicles per person in household -- -- 4.7199 4.334*** 4.5087 2.889***
interacted with travel day being on a weekend -- -- 8.1199 1.786* 17.1592 2.816***

Neighborhood transportation network characteristics
Length of roadway with no sidewalk – 1 mile buffer -0.0483 -3.288*** 0.3397 2.128** -0.0554 -2.784*** 0.6447 2.399**
Length of roadway with bike lane – ¼ mile buffer 0.2140 2.265** -- -- 0.1005 0.801
Number of intersections (per acre) – ¼ mile buffer 0.0503 2.261** -- -- 0.0160 0.550

r-squared
system r-square
autocorrelation coefficient

SUR MODEL SPATIAL SUR MODEL

*** indicates significance at 99% level, ** indicates 95% level, * indicates 90% level, All other variables are not significant at 90% level

Explanatory Variables
MWB VMT MWB VMT

0.0006 0.0015
0.1507

0.2360.0429
0.1261

0.18980.0511
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Table 3. Variance, Cross equation correlation between SUR and SSUR 

Variance 
SUR SSUR 

 MWB VMT  MWB VMT 
MWB 2.6744 -2.3153 MWB 2.7389 -2.5286 
VMT -2.3153 415.7054 VMT -2.5286 429.8206 

Cross-equation correlations 
SUR SSUR 

 MWB VMT  MWB VMT 
MWB 1.0000 -0.0694 MWB 1.0000 -0.0737 
VMT -0.0694 1.0000 VMT -0.0737 1.0000 

 

CONCLUSIONS 

This paper has examined the application of the SSUR model to account for the inter-

equation correlation due to unobserved personal characteristics and the spatial error 

autocorrelation among the error terms of each equation. The estimation results suggest 

significant presence of spatial dependency and a marginally improved goodness-of-fit of 

the SSUR model over the conventional SUR model, at least in this particular empirical 

context.  

The comparison between the two sets of parameter estimates suggests no dramatic 

change in the signs of parameters between the two models. Of note are the two BE-

related parameters that consistently have opposite signs in the MWB and VMT equations 

in both models. The opposite signs suggest that both strategies – increased retail 

accessibility and improved prevalence of sidewalks within 1 mile neighborhood buffers – 

have the substitutive effect of simultaneously increasing an individual’s level of 

walking/biking and reducing distance traveled by vehicular modes. This finding, in part, 

concurs with the theory of Neo-urbanism.  

While most parameter estimates are similar in magnitude between the two models, the 

corresponding estimates are quite different for some variables (for example, travel day 

being on the weekend, retail accessibility, and land use mix). If these parameter estimates 

are subsequently used in, for example, assessment of return on alternative BE investment 
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(see Guo and Gandavarapu, 2009), these differences in estimates may lead to very 

different policy recommendations. This points to the importance of selecting the ‘right’ 

model structure for such policy assessment.  

Given that this is one of the first studies to apply the SSUR model in travel modeling, 

future empirical applications are needed to further assess the promise of such a model. 

One of the lessons learnt in this study is that currently none of the public or proprietary 

econometric modeling software supports the estimation of SSUR models. Making the 

model estimation procedure available to the research community and policy analysts is 

key to promoting the consideration and application of such advanced spatial econometric 

models in travel modeling.  
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