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Introduction 
 
The traditional four-step planning process involves the application of static methods to peak and off-
peak time periods, with a matrix of average travel time skims being calculated for each period. Each of 
these time periods can span several hours. Even when separate AM and PM planning models are 
developed, crucial within-period congestion dynamics may be ignored owing to the known limitations of 
the static modeling approach.  
 
Mode choice models form a key step in the above four-step framework, splitting a single production-
attraction (PA) or origin-destination (OD) matrix into a set of mode-specific demand matrices that can 
then be assigned onto the network links available to each mode. Mode splits are currently captured 
through discrete choice models popularly cast in the Logit and Nested Logit frameworks, and require 
estimation from disaggregate or survey data. These data almost always have to be augmented with the 
latest network skims such as travel times, in order to evaluate the (dis)utility of various modes. Static 
travel time skims are routinely utilized for this purpose, ignoring the impact of departure time on 
expected congestion and hence mode choice. 
 
With the advent of time-dependent models based on Dynamic Traffic Assignment (DTA), it is now 
possible to estimate mode choice models using dynamic skims in place of the static skims generated by 
the planning process. Skims dependent on trip departure time are expected to represent a more realistic 
picture of trip-maker perceptions about expected network conditions. This paper explores the impact of 
such a substitution on the estimated parameters of a mode choice model based on real survey data. 
 
Methodology 
 
Without loss of generality, we focus our attention on the Nested Logit (NL) model, a framework that is 
rapidly gaining popularity in mode choice practice. The basic premise of NL is that an individual’s 
choice is a result of a hierarchy of decisions, the levels being represented schematically as a tree: 
 

 
Figure 1. Nested Logit Mode Choice Model Tree 
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The example in Figure 1 indicates that trip makers consider a choice set of six modes: drive alone (DA), 
carpool (CP), bike, walk, transit and ferry. However, the actual choice is derived in two stages. In stage 
one, the trip maker decides between auto, non-motorized (NM), transit and ferry. If auto is preferred, 
then a second choice between DA and CP is executed. On the other hand, if NM is preferred, then a 
corresponding choice between bike and walk modes is executed. These modes are therefore selected 
conditional on a higher-level group or nest (auto or NM) being selected first. 
 
The application of such a model requires the specification and estimation of utility equations for each of 
the modes, and the estimation of structural parameters (denoted as theta in the literature) for each of the 
nests (Auto and NM, in our example above). The theory behind NL model development is covered in 
depth in the literature (e.g. Ben-Akiva and Lerman (1985)). 
 
The utility equations contain variables that are essential to explaining trip makers’ mode choice 
decisions in the study region. In this context, network skims such as mode-specific travel times, transit 
wait times, fares and tolls are particularly relevant, and may be functions of the level of congestion. 
Further, these skims often do vary significantly over even small time intervals of a few minutes, an 
effect ignored by the static approach. 
 
The methodology proposed for this study is as follows: 
 

• Develop static travel time skims from the four-step planning model for the period of study. 
• Estimate a NL mode choice model using these skims as inputs, together with a mode choice 

survey dataset. 
• Perform a DTA on the same dataset. 
• Calculate dynamic travel time skims for each combination of OD pair and departure time interval 

encountered in the survey. Tag these values into a new field in the survey dataset. 
• Re-estimate the mode choice model after substituting the new dynamic skims in place of the 

static variable. 
• Compare the estimation results from the two exercises. 
 

It should be noted that NL model estimation is not a globally convex optimization problem, unlike 
multinomial logit (MNL) model estimation (Brownstone and Small, 1989; Daganzo and Kusnic, 1992; 
Koppelman and Bhat, 2006; Balakrishna and Sundaram, 2009; Balakrishna et al., 2009). Consequently, 
the starting values of the nest coefficients can potentially impact the final estimated coefficients and 
parameters. Care should therefore be taken to perform a systematic search on the space of the nesting 
coefficients to ensure that the best model(s) in each experiment are identified. The remainder of this 
paper focuses on a case study demonstrating the proposed methodology. 
 
Case study: Victoria, British Columbia 
 
A mode choice survey dataset from Victoria, British Columbia in Canada was employed for the 
numerical analysis. Home based work (HBW) trips during the AM peak (7:00-9:00) were chosen, and 
the model structure in Figure 1 was estimated. The utility equations were specified as follows (Table 1): 
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Coefficient DA CP Bike Walk Transit Ferry 
ASC_DA 1      
ASC_CP  1     
ASC_Bike   1    
ASC_Walk    1   
ASC_Transit     1  
ASC_Ferry      Base 
B_Distance   Dist Dist   
B_Ped   Ped Ped Ped  
B_IVTT Auto_IVTT Auto_IVTT   Bus_IVTT  
B_Park Park_Cost Park_Cost     

Table 1. Utility Equations for Peak HBW Trips 
 
Alternative Specific Constants (ASCs) were defined for all modes except the ferry, which served as the 
base for comparison. The walk distance (Dist) was specified for the non-motorized modes and Ped (a 
dummy variable set to 1 if the trip was within any of three dense urban districts) was used to capture a 
propensity for transit and non-motorized travel. Auto in-vehicle travel time (Auto_IVTT) and parking 
cost (Park_Cost) completed the utility equations for the two drive modes. 
 
Static skims and other mode choice model inputs were available from the existing TransCAD planning 
model developed for the region. These data were used with TransCAD’s built-in NL model estimation 
procedure to develop the HBW mode choice model for the AM peak period. The starting values of the 
nest coefficients for the Auto and NM nests were exhaustively varied between 0 and 1 in steps of 0.05 to 
ascertain a set of feasible models. The best model identified through this approach is summarized in 
Table 2 below. 
 

Parameter Estimate t statistic 
B_Ped 0.6391 4.54
B IVTT -0.0049 -0.43
B Distance -0.2053 -5.97
B_Park -0.2376 -10.07
ASC (Transit) 4.8620 4.67
ASC(DA) 7.3248 7.17
ASC(CP) 5.8049 4.38
ASC(Bike) 5.9994 5.66
ASC(Walk) 5.8280 5.35
Theta(Auto) 0.5973 (starting = 0.6) -3.13
Theta(NM) 0.3659 (starting = 0.2) -8.87
Log-Likelihood at Zero  -2161.33
Log-Likelihood at End -1140.67
Rho2 0.4722
Adjusted Rho2 0.4671

Table 2. Mode Choice Model Estimated with Static AM Peak Travel Time Skims 
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The planner’s DTA in TransCAD version 5.0 was selected to test the hypothesis that dynamic skims can 
significantly alter the model parameter estimates. This DTA implementation is an adaptation of the work 
contained in Janson (1991) and Janson and Robles (1995). The DTA model is formulated as a 
constrained optimization problem whose solution closely satisfies a temporal extension of Wardrop’s 
first principle, i.e. all used paths between a given origin-destination (OD) pair for the same departure 
time have the same and minimum experienced travel time. The solution algorithm contains two levels of 
iterative processes. An outer process solves for a consistent node-time-arrival matrix that governs the 
dynamic propagation of OD flows in the network (and can be roughly viewed as a temporal extension of 
the link-path incidence matrix in a static assignment problem); the inner process solves for a user 
equilibrium for a given node-time-arrival matrix. When both iterative processes converge, dynamic user 
equilibrium is reached for a node-time-arrival matrix consistent with actual link travel times.  

 
The DTA procedure in TransCAD extends Janson’s algorithm in several respects. One significant 
departure is a correction that ensures First-In-First-Out (FIFO) flows and more accurate estimation of 
travel times. There are also some changes in the algorithm and convergence checks that result in more 
consistent calculations. The TransCAD DTA introduces spillback as in Janson (2001), but uses a 
different set of adjustments. Lastly, an option is provided to use stochastic user equilibrium (SUE) 
instead of deterministic user equilibrium (UE) algorithm as the assignment method. For SUE, the 
Method of Successive Averages (MSA) algorithm is used to solve the upper subproblem. 
 
The DTA in TransCAD can operate on existing planning models with minimal additional effort, thus 
providing a dynamic alternative to model very large regional networks. It is therefore a candidate for 
generating the dynamic skims for mode choice model estimation in the Victoria region. The static AM 
peak demand, specified as two hourly matrices, was profiled into 15-minute slices and the DTA 
procedure was run to convergence at a relative gap of 0.001.  
 
Average OD travel times were calculated by weighting the dynamic skims for each departure time 
interval by the corresponding OD flows. The results revealed that the weighted dynamic skims averaged 
32.47 minutes with a standard deviation of 29.31 minutes, the statistics being computed across all OD 
pairs. In contrast, the static skims averaged 30.93 minutes with a standard deviation of 27.84 minutes. 
The differences are better illustrated by fitting a straight line passing through the origin, which yielded 
an 2R  of just 0.27. 
 
The dynamic skims were tagged to the survey data using the trip departure time field, and the HBW 
mode choice model for the AM peak was re-estimated. A grid search on the nest coefficients was again 
used. The results of the new estimation are summarized below in Table 3: 
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Parameter Estimate t statistic 
B_Ped 0.6291 4.17
B IVTT -0.0008 -0.38
B Distance -0.2423 -12.37
B_Park -0.2517 -8.82
ASC (Transit) 4.2160 5.22
ASC(DA) 6.7781 7.66
ASC(CP) 6.7597 7.64
ASC(Bike) 5.7553 6.26
ASC(Walk) 5.7511 6.26
Theta(Auto) 0.0156 (starting = 0.001) -1349.07 
Theta(NM) 0.0089 (starting = 0.001) -1853.45 
Log-Likelihood at Zero  -2161.33
Log-Likelihood at End -1226.54
Rho2 0.4325
Adjusted Rho2 0.4274

Table 3. Mode Choice Model Estimated with Dynamic AM Peak Travel Time Skims 
 
A review of the estimation results in Tables 2 and 3 reveals that many of the coefficients remain similar 
in the two cases. However, the IVTT coefficient with dynamic skims is almost one-sixth of the value 
estimated with static skims. Also, the two auto sub-modes are drawn much closer with dynamic skims, 
reflected in nearly identical ASCs. 
 
The search on the theta domain was also much harder when dynamic skims were used, yielding only one 
solution for which all coefficients had the expected signs. In contrast, multiple feasible solutions were 
generated for the case with static skims. The estimated nest coefficients also yield interesting 
differences. Theta(Auto), for example, is significantly different than unity (Table 3) but is also 
significantly different than zero with a t statistic of 21.36. Similarly, Theta(NM) is significantly different 
than zero with a t statistic of 16.68. In the static case (Table 2), the nest coefficients are well away from 
both zero and unity. This leads to the conclusion that the correlations captured by NL are very different 
in the two cases, a finding that can have significant impacts in scenario analysis. 

 
Conclusion 
 
The preliminary results from this study indicate that the inclusion of within-period dynamics can impact 
the outcome of mode choice model estimation. The skims obtained from the static planning model may 
be inconsistent with actual congestion fluctuations within the study period, thereby introducing errors 
into the mode choice model estimation process. Further tests are being performed to ascertain the extent 
of the impacts across a range of time periods and trip purposes. Estimation differences when using static 
and dynamic skims can necessitate discussions of the impacts on the planning process, which typically 
does not generate dynamic network skims. Mode and departure time choice dimensions may also have 
to be combined to account for trip makers’ true decision-making processes. 
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