

Simple Synthetic Populations Without the Use of Random Draws

Vince Bernardin, Jr., Ph.D. Bernardin, Lochmueller & Associates, Inc.

Bernardin · Lochmueller & Associates, Inc.

	Analytic	Simulation
Aggregate		
Disaggregate		

	Analytic	Simulation
Aggregate	Four-step	
Disaggregate		

	Analytic	Simulation	
Aggregate	Four-step		
Disaggregate		Activity-Based	

	Analytic	Simulation	
Aggregate	Four-step		
Disaggregate	"Hybrid"	Activity-Based	

Background

- History
 - Northwest Arkansas Hybrid Aggregate/ Disaggregate, 2006
 - Knoxville Region 1st Hybrid Trip-based/Tour-based, 2009
 - Evansville Metro Area New Hybrid Model, 2011

Bernardin · Lochmueller & Associates, Inc. Planners · Engineers · Surveyors

Why build hybrids?

Aggregation Bias

- Consider the probability of transit use for:
 - 100 households with an average of 2.2 cars per household
 - 5 households with no cars, 15 hh with one car, 50 hh with two cars, 20 hh with three cars, 5 hh with four cars, 5 hh with five
- Non-linear choice probabilities

Bernardin · Lochmueller & Associates, Inc.

Why build hybrids?

- Aggregation Bias
- Efficiency
 - Consider the following scenario:
 - A sample of 10-12 activity-based simulations per scenario can be required for corridor-level auto loadings, transit, etc.
 - A single run typically takes 12-24 hours on a machine with 10-15 processors
 - Comparing just 4 alternatives can take a month of computing time
 - We would all do well to take this seriously

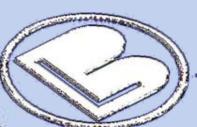
Bernardin · Lochmueller & Associates, Inc.

The Challenge

Eliminate aggregation bias Produce a synthetic population Without using random draws

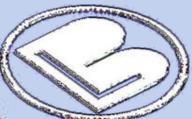
Approaches

Rule-based heuristics


- Shift people, jobs, income, students, etc., between households until criteria are met
- Northwest Arkansas
- Weighting
 - Define all possible household categories and weight them by their probability x population
 - Knoxville, Evansville

Bernardin · Lochmueller & Associates, Inc.

Weighting


- Advantage: It's easy!
- Limitation: Size
 - Records in population database depend on number of household types & grow quickly with the number of household characteristics
 - But, not as bad as you might think, since many combinations of characteristics are not possible or observed

Bernardin · Lochmueller & Associates, Inc. Planners · Engineers · Surveyors

Knoxville's Synthetic Population

- Households only (not individuals)
- 6 variables
 - Number of Persons: 1-5+
 - Number of Workers: 0-3+
 - Number of Students: 0-2+
 - Presence of Seniors: 0,1
 - Income Group: low, mid, high
 - Vehicle Ownership: 0-4+

Bernardin · Lochmueller & Associates, Inc.

Database Size

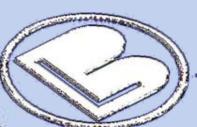
Possible Size

 $> 5 \times 4 \times 3 \times 2 \times 3 \times 5 \times TAZ = 1800 \times TAZ$

Constraints

- e.g., workers <= persons</p>
- Observed 157 x 5 x TAZ = 785 x TAZ

Knoxville

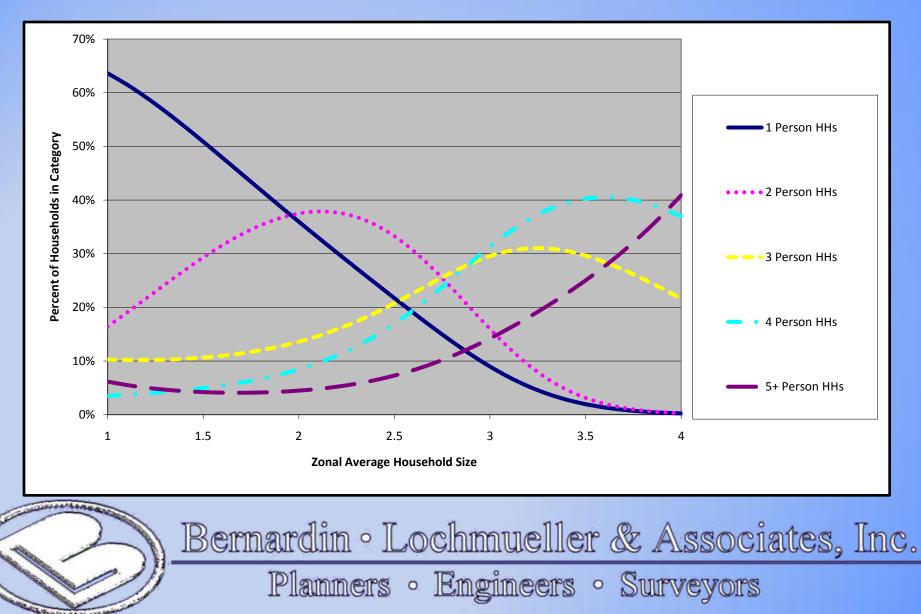

- ~1,000 TAZ => 800,000 records
- More than actual number of households
- But easy to produce and manageable size

Bernardin · Lochmueller & Associates, Inc.

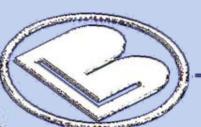
Three Easy Steps

- Univariate, marginal distributions
 - Aggregate ordinal logit models
 - With shadow prices to enforce means
- Combined, multivariate distribution
 - Iterative proportional fitting
- Vehicle Availability / Auto Ownership
 - Disaggregate ordinal logit model

Bernardin · Lochmueller & Associates, Inc.

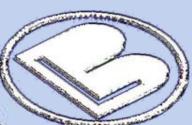

Aggregate Ordinal Logit Models

- OLM outperformed (un-nested) MNL
- Simple, aggregate logit models driven by distribution's mean


Bernardin · Lochmueller & Associates, Inc.

Univariate Marginal Distributions

Aggregate Ordinal Logit Models


- OLM outperformed (un-nested) MNL
- Simple, aggregate logit models driven by distribution's mean
 - Secondary variables contribute, too
 - e.g., for a given zonal students/hh, zero student households are more likely with seniors

Bernardin · Lochmueller & Associates, Inc.

Household Size OLM

	Household Size	Alternative	Parameter	t-statistic	
	Logsum Parameters				
	Nest_1	alt_2, Nest_2	0.9	Constrained	
	Nest_2	alt_3, Nest_3	0.8	Constrained	
X	Nest_3	alt_4, alt_5	0.7	Constrained	
	Alternative Specific Parameters				
	CONSTANT	alt_1	1.4991	1.15	
	CONSTANT	alt_2	-4.2750	-2.18	
	CONSTANT	alt_3	-0.4124	-0.29	
	CONSTANT	alt_4	-1.9605	-1.35	
	Zonal Average Household Size	alt_1	2.5378	2.05	
	Zonal Average Household Size	alt_2	4.9789	2.96	
	Zonal Average Household Size	alt_3	1.5143	1.26	
	Zonal Average Household Size	alt_4	1.9344	1.58	
	Zonal Average Household Size, Squared	alt_1	-0.9999	-3.55	
	Zonal Average Household Size, Squared	alt_2	-1.3571	-3.70	
	Zonal Average Household Size, Squared	alt_3	-0.3655	-1.39	
	Zonal Average Household Size, Squared	alt_4	-0.3655	Constrained	
	Population Density	alt_1	0.0581	2.07	
	Log of Zonal Average HH Income	alt_1	-0.3076	-2.41	
	Log of Zonal Average HH Income	alt_2	0.3827	3.43	
	Percent of Households with Senior	alt_3	-1.5443	-2.62	
	Model Statistics	statistic			
	Log Likelihood at Zero	-4730.5			
	Log Likelihood at Constants	-4363.7			
	Log Likelihood at Convergence	-4229.1			
	Rho Squared w.r.t. Zero	0.106			
	Rho Squared w.r.t Constants	0.031			
urdin · Lochmueller & Associates, Inc.					
Planners · Engineers · Surveyors					
9					

Berna

Shadow Prices

- Used to guarantee output distribution has the mean given as input
- Developed iteratively
 - For alternatives less than the given mean: $s_i = s_{i-1} + (TrueAvg - AltAvg) \ln (EstAvg_{i-1}/TrueAvg)$
 - For alternatives greater than the given mean: $s_i = s_{i-1} + (TrueAvg - AltAvg) \ln (TrueAvg/EstAvg_{i-1})$

Bernardin · Lochmueller & Associates, Inc.

Iterative Proportional Fitting

- Marginals from OLM
- Seed distribution of households (from PUMS, etc.)
- Iterative row and column factoring (factors = target/current) converges on distribution with given marginals

Bernardin · Lochmueller & Associates, Inc.

Vehicle Availability Choice

- Disaggregate OLM
- Each individual household chooses how many vehicles to own / lease

Vehicle ownership levels respond to

- Demographics (household size, income, number of workers, students, etc.)
- Gas Prices
- Transit Availability
- Urban Design (pedestrian environment) / grid vs. cul-de-sac design)

Bernardin · Lochmueller & Associates, Inc.

Closing Thoughts

- Weighting (using OLM & IPF) is viable for creating disaggregate, analytic "hybrid" models
- Rule-based approach deserves further exploration due to size considerations
- More work needed on the effects of simulation variation on model outputs, especially for transit & disaggregate results

Bernardin · Lochmueller & Associates, Inc.

Questions?

VBernardin2@BLAinc.com

Bernardin · Lochmueller & Associates, Inc.