Heuristic Models of Pedestrian Walking Direction Choice

Wei Zhu Center for Adaptive Behavior and Cognition Max-Planck-Institute for Human Development Berlin, Germany Harry Timmermans Urban Planning Group Eindhoven University of Technology Eindhoven, The Netherlands

Technische Universiteit Einvhoven University of Technology

Motivation

• Do people aggregate information when they make choices? (As assumed in utility-based models)

• Or process options and information sequentially due to their bounded rationality? (e.g., Simon, 1956)

- Evidence is mixed. But in travel modeling, using compensatory models is still dominant.
- Purpose: From a practical point of view, to see whether heuristic models can be useful tools for modeling travel behavior.
- Use an example about how shopping pedestrians choose walking directions.

Model comparison

- Heuristic models
 - Conjunctive rule
 - Disjunctive rule
 - Lexicographic rule
- Compensatory models
 - Multinomial logit model
 - Mixed logit model

Data

- Data, pedestrians' shopping dairies
- Wang Fujing Street, Beijing, 2004

Heuristic models

- Conjunctive: All criteria must be satisfied in order to accept an alternative
- Factor thresholds δ_i

$$p_i = \begin{cases} 1 & \text{if } x_{i1} \ge \delta_1 \land \dots \land x_{iJ} \ge \delta_J \\ 0 & \text{otherwise} \end{cases}$$

• Threshold heterogeneity

$$p_1^N = \prod_x p_1^{Nx} \quad x = d, q, l$$
$$p_1^{Nd} = \alpha^d (1 - d^N) + \beta^d d^N$$
$$p_1^{Nq} = G^q (q^N - \alpha^q, \beta^q, \theta^q)$$
$$p_1^{Nl} = G^l (l^N - \alpha^l, \beta^l, \theta^l)$$

If both directions are satisfactory or unsatisfactory, choose randomly

$$p^{N} = p_{1}^{N} p_{0}^{S} + (p_{1}^{N} p_{1}^{S} + p_{0}^{N} p_{0}^{S})0.5$$
$$p_{0}^{N} = 1 - p_{1}^{N}$$

 Disjunctive: Only one criterion needs to be satisfied in order to accept an alternative

$$p_i = \begin{cases} 1 & \text{if } x_{i1} \ge \delta_1 \lor \dots \lor x_{iJ} \ge \delta_J \\ 0 & \text{otherwise} \end{cases}$$

Replace
$$p_1^N = \prod_x p_1^{Nx}$$
 with
 $p_1^N = \sum_x p_1^{Nx} - p_1^{Nd} p_1^{Nq} - p_1^{Nd} p_1^{Nl} - p_1^{Nq} p_1^{Nl} + \prod_x p_1^{Nx}$

• Lexicographic: Compare attributes in descending importance until the attributes discriminate

Compensatory models

• Multinomial logit

$$p^{Y} = \frac{\exp(v^{Y})}{\sum_{Y'} \exp(v^{Y'})} \quad Y, Y' = N, S$$
$$v^{Y} = \beta^{d} d^{Y} + \beta^{q} q^{Y} + \beta^{l} l^{Y}$$

• Mixed logit

- Assumed parameters in MNL are normal distributions

Results

Model	N^{P}	LL	CAIC
Conjunctive	5	-966	1,975
Disjunctive	3	-987	2,000
Lexicographic $d \rightarrow q \rightarrow l$	5	-963	1,968
Lexicographic $d \rightarrow l \rightarrow q$	5	-962	1,968
Lexicographic $q \rightarrow d \rightarrow l$	4	-946	1,926
Lexicographic $q \rightarrow l \rightarrow d$	4	-953	1,941
Lexicographic $l \rightarrow d \rightarrow q$	4	-970	1,974
Lexicographic $l \rightarrow q \rightarrow d$	4	-953	1,941
MNL standard	2	-989	1,996
MNL with logged variables	3	-991	2,008
Mixed logit	6	-988	2,029

	Lexicographic $q \rightarrow d \rightarrow l$	
	Parameter	Estimate
Prob of turning back	$lpha^{d}$	0.381 *
Prob of following the previous direction	$oldsymbol{eta}^{d}$	0.767 *
hreshold for floorspace	$lpha^q$	17,999.620 *
	eta^q	-
	$oldsymbol{ heta}^q$	-
Threshold for pedestrian street length	$oldsymbol{lpha}^{l}$	348.636 *
	$oldsymbol{eta}^{\prime}$	-
	$oldsymbol{ heta}^l$	-
	N^{C}	2,098
	N^{P}	4
	LL	-946
	CAIC	1,926

Conclusion

- Models of non-compensatory decision mechanisms can fit the data well. They can be practically useful for predicting travel behavior.
- Models of sequential processing do not rely on covariance, which may lower the risk of over-fitting. (When one reason suffices, why use another?)

Future directions

- Apply heuristic models on more complicated decision problems to test their general utility.
- Could transportation practices benefit from the sequential mechanisms in heuristic models? Is less-is-more effect possible?

Thank you

zhu@mpib-berlin.mpg.de h.j.p.timmermans@tue.nl