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Introduction - Discrete-
Continuous frameworks (D/C)

 Characterized by a continuous variable related to a discrete 
variable

 Selective sample observation effect: Continuous outcome 
observed only if a discrete condition is met.
Examples: Household income observation, GPS-based data

 Endogenous treatment effect: The continuous equation depends 
on a discrete explanatory variable that is determined 
endogenously with the continuous variable. Examples: job 
training program – wages, seat belt use – injury severity



Introduction – Spatially and Socially dependent 
choice processes (SD)

 Characterized by a choice process influenced by unobserved 
error dependency based on spatial location 

 Spatial dependence across alternatives
 Spatial dependence across observational units

 Tendency of data points to be similar when closer in space
 Diffusion effects 
 social interaction effects 
 unobserved location-related effects

 Examples: Residential location choice, Physical activity 
participation



State of the field – D/C

 Discrete choice models have seen substantial 
advancement in recent years

 Mixed logit and advances in simulation

 Not the same level of maturity in discrete-continuous 
frameworks

 “The field is still expanding more than it is coalescing” 
- Train 

 Approaches

 Heckman or Lee’s approach

 Semi-parametric and Non-parametric approaches

 More recently Copula approach



State of the field – SD

 Spatial correlation across alternatives: choices correspond to 
spatial units.

 Transportation and geography literature.

 Common model structures include mixed logit, multinomial 
probit, GEV-based spatially correlated models.

 Spatial correlation across observational units: choices among 
the aspatial alternatives may be moderated by space.

 Regional science and political science literature

 Common model structure include Binary spatial probit model 

estimated using McMillen’s EM, LeSage’s MCMC etc.



D/C frameworks
 Direct and indirect utility approaches to modeling 

discrete/continuous frameworks

 Typically D/C approaches begin with constrained direct 
utility functions

 This constrained direct utility function can be equivalently 
represented by an indirect utility function 

 Once an indirect utility function is chosen, deriving demand 
functions is relatively easy

 However, recently studies have started employing direct 
utility functions to model D/C frameworks particularly for 
multiple-discrete choices

 An explicit framework employing direct utility functions 
applicable to multiple discrete problems is discussed in detail



Why multiple-discreteness
 Several consumer demand choices are characterized by multiple 

discreteness

 Vehicle type holdings and usage

 Household consumption patterns on consumer services/goods 

 Activity type choice and duration of participation 

 Airline fleet mix and usage

 Carrier choice and transaction level

 Brand choice and purchase quantity

 Stock choice and investment amount



 Modeling methodologies of multiple discrete situations

 Traditional random utility-based (RUM) single discrete choice models 

 Number of composite alternatives explodes with the number of elemental 
alternatives 

 Multivariate probit (logit) methods

 Not based on a rigorous underlying utility-maximizing framework of multiple 
discreteness  

 Other issues with these methods

 Cannot accommodate the diminishing marginal returns (i.e., satiation) in the 
consumption of an alternative 

 Cumbersome to include a continuous dimension of choice



 Modeling methodologies of multiple discrete situations

 Two alternative methods proposed by Wales and Woodland (1983)

 Amemiya-Tobin approach

 Kuhn-Tucker approach 

 Both approaches assume a direct utility function U(x) that is assumed to be 
quasi-concave, increasing, and continuously differentiable with respect to 
the consumption quantity vector x

 Approaches differ in how stochasticity, non-negativity of consumption, and 
corner solutions (i.e., zero consumption of some goods) are accommodated 



 Methods proposed by Wales and Woodland 

 Amemiya-Tobin approach

 Extension of the classic microeconomic approach of adding normally distributed 
stochastic terms to the budget-constrained utility-maximizing share equations  

 Direct utility function U(x) assumed to be deterministic by the analyst, and 
stochasticity is introduced post-utility maximization

 Kuhn-Tucker (KT) approach 

 Based on the Kuhn Tucker or KT (1951) first-order conditions for constrained 
random utility maximization

 Employs a direct stochastic specification by assuming the utility function U(x) to 
be random (from the analyst’s perspective) over the population

 Derives the consumption vector for the random utility specification subject to the 
linear budget constraint by using the KT conditions for constrained optimization

 Stochastic nature of the consumption vector in the KT approach is based 
fundamentally on the stochastic nature of the utility function



 Advantages of KT approach

 Constitutes a more theoretically unified and consistent framework for 
dealing with multiple discreteness consumption patterns 

 Satisfies all the restrictions of utility theory

 Stochastic KT first-order conditions provide the basis for deriving the 
probabilities for each possible combination of corner solutions (zero 
consumption) for some goods and interior solutions (strictly positive 
consumption) for other goods 

 Accommodates for the singularity imposed by the “adding-up” constraint 

 Problems with KT approach used by Wade and Woodland

 Random utility distribution assumptions lead to a complicated likelihood 
function that entails multi-dimensional integration



 Studies that used the KT approach for multiple discreteness

 Kim et al. (2002) 

 Used the GHK simulator to evaluate the multivariate normal integral appearing in 
the likelihood function in the KT approach 

 Used a generalized variant of the well-known translated constant elasticity of 
substitution (CES) direct utility function

 Not realistic for practical applications and is unnecessarily complicated 

 Bhat (2005) 

 Introduced a simple and parsimonious econometric approach to handle multiple 
discreteness

 Based on the generalized variant of the translated CES utility function but with a 
multiplicative log-extreme value error term

 Labeled as the multiple discrete-continuous extreme value (MDCEV) model

 MDCEV model represents the multinomial logit (MNL) form-equivalent for multiple 
discrete-continuous choice analysis and collapses exactly to the MNL in the case 
that each (and every) decision-maker chooses only one alternative

 Several studies in the environmental economics field 

 Phaneuf et al., 2000; von Haefen et al., 2004; von Haefen, 2003a; von Haefen, 
2004; von Haefen and Phaneuf, 2005; Phaneuf and Smith, 2005

 Used variants of the linear expenditure system (LES) and the translated CES for 
the utility functions, and used multiplicative log-extreme value errors 



MDCEV
Functional form of utility function

 is a quasi-concave, increasing, and continuously 
differentiable function with respect to the consumption 
quantity vector x
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Assumptions

 Additive separability

 All the goods are strictly Hicksian substitutes

 Marginal utility with respect to any good is 
independent of the level of consumption of other 
goods

 Weak complementarity



Role of

 represents the baseline marginal utility, or the 
marginal utility at the point of zero consumption 

 Higher baseline     implies less likelihood of a 
corner solution for good k
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Empirical identification issues associated 
with utility form

 Empirical identification issues associated with 
utility form 
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Empirical identification issues associated 
with utility form-cont’d

 Empirical identification issues associated with 
utility form 
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Empirical identification issues associated 
with utility form-cont’d

 Empirical identification issues associated with 
utility form 
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Empirical identification issues associated 
with utility form-cont’d

 Empirical identification issues associated with 
utility form 
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Stochastic form of utility function

 Overall random utility function
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KT conditions
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General econometric model structure 

and identification
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where J is the Jacobian whose elements are given by (see Bhat, 2005a):
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Specific model structures

 The MDCEV model structure 
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MDCEV model structure cont’d

 Probability of the consumption pattern of the 
goods (rather than the expenditure pattern) is
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MDCEV in an activity-based context

 Growing interest in accommodating joint activity participation across 
household members

 In conventional discrete choice frameworks, the need to generate 
mutually exclusive alternatives results in an explosion in choice sets

 MDCEV allows us to tackle the problem by considering activity 
participation as a household decision. 

 MDCEV offers substantial computational and behavioral advantages

 Employ one model to generate activity participation for all household members 
as opposed to one model per activity type and per person while simultaneously 
accommodating for joint activity participation

 Accommodate substitution/complementarity in activity participation and 
household member dimensions 



Activity Generation Framework

1Alone

Two 

For household with P members

2 .............. P

1,2 1,3 .............. P
....... 1,P 2,3

..............

All Adults 1,2.... P

PC1

PC2

..............

PCP

Alternatives for Activity Type = 2^P-1

For each activity 
purpose



MDCEV Framework

Overall choice process 
(for A activity 

purposes)

1 2 A

..............

2^P-1 2^P-1 2^P-1

Total Choice Alternatives = (2^P-1)(A) + 1



Traditional Framework

 Within single discrete choice models, there is 
explosion of alternatives for accommodating joint 
activities

 We need to determine the entire set of activity 
purposes pursued and with whom dimension for each 
of these



Illustration

 For two activity purposes A1 and A2, the possible activity participation:
 None
 A1 only
 A2 only
 A1 and A2 

 So on the activity dimension 2^2 =2^ActNo

 For 2 persons P1, P2, the possible combinations:
 P1 alone
 P2 alone
 P1 and P2 

 So on the person dimension 2^2-1 =(2^PerNo-1)

 For each additional person combination we will have 2^ActNo repeating 
(2^P-1) times

 Now for 2 person and 2 activities we have:
 2^2 *2^2 *2^2



 For A activity purposes, P household 
members the number of alternatives is 
given by

2 *2 *2 .... (2 1) timesA A A P

(2 1)2
PA



Example 2 persons and 2 activity purposes – Single Discrete 
Case

P1 P2 P1 P2

None None None

A1 None None

A2 None None

A1 A2 None None

P1 P2 P1 P2

None None A1

A1 None A1

A2 None A1

A1 A2 None A1

P1 P2 P1 P2

None None A2

A1 None A2

A2 None A2

A1 A2 None A2

P1 P2 P1 P2

None None A1 A2

A1 None A1 A2

A2 None A1 A2

A1 A2 None A1 A2

P1 P2 P1 P2

None A1 None

A1 A1 None

A2 A1 None

A1 A2 A1 None

P1 P2 P1 P2

None A1 A1

A1 A1 A1

A2 A1 A1

A1 A2 A1 A1

P1 P2 P1 P2

None A1 A2

A1 A1 A2

A2 A1 A2

A1 A2 A1 A2

P1 P2 P1 P2

None A1 A1 A2

A1 A1 A1 A2

A2 A1 A1 A2

A1 A2 A1 A1 A2

P1 P2 P1 P2

None A2 None

A1 A2 None

A2 A2 None

A1 A2 A2 None

P1 P2 P1 P2

None A2 A1

A1 A2 A1

A2 A2 A1

A1 A2 A2 A1

P1 P2 P1 P2

None A2 A2

A1 A2 A2

A2 A2 A2

A1 A2 A2 A2

P1 P2 P1 P2

None A2 A1 A2

A1 A2 A1 A2

A2 A2 A1 A2

A1 A2 A2 A1 A2

P1 P2 P1 P2

None A1 A2 None

A1 A1 A2 None

A2 A1 A2 None

A1 A2 A1 A2 None

P1 P2 P1 P2

None A1 A2 A1

A1 A1 A2 A1

A2 A1 A2 A1

A1 A2 A1 A2 A1

P1 P2 P1 P2

None A1 A2 A2

A1 A1 A2 A2

A2 A1 A2 A2

A1 A2 A1 A2 A2

P1 P2 P1 P2

None A1 A2 A1 A2

A1 A1 A2 A1 A2

A2 A1 A2 A1 A2

A1 A2 A1 A2 A1 A2

Each box 
represents an 

alternative



Example 2 persons and 2 activity purposes – Multiple 
Discrete Case

 +

 Total 7 alternatives versus 64 in 
traditional case

A1 P1 A1 P2 A1 P1P2

A2 P1 A2 P2 A2 P1P2

Each box 
represents an 

alternative

None



Total choice set size comparison for 3 activity 
purposes

Household Size Single Discrete Model (MNL) MDCEV

1 8
3

2 512
9

3 2097152
21

4
3.52 x 1013 45

5 
9.9 x 1027 93

Total 9.9 x 1027 171

Once the number of activities increases the difference will be even stark!



MDCEV in Activity-Based Model

 Currently, most activity based models accommodate activity 
type choice as a series of activity type specific binary logit 
models for each individual in the household

 These approaches do not explicitly recognize that activity 
participation is a collective decision of household members

 MDCEV approach, because of its simplicity and relatively 
inexpensive computational requirement, facilitates modeling 
activity participation at a household level with joint activity 
participation incorporated in a simple fashion

 CEMDAP (within SimAGENT) now features MDCEV for activity 
participation



Comparison of some models

Model
Aspect

SF-CHAMP SACSIM MORPC CEMDAP  SimAGENT

MPO

San Francisco
County 
Transportation
Authority

Sacramento 
Area
Council of
Governments

Mid-Ohio 
Regional
Planning
Commission

North Central
Texas Council 

of
Governments

Southern 
California 
Association of 
Governments 
(SCAG)

Region
San Francisco
County, CA

Sacramento, CA Columbus, Ohio
Dallas Fort-
Worth, TX

Los Angeles, 
CA

Base year 1998 2000 2000 2000 2003

Population 
in base year

0.3 Million
Households
0.8 Million
Individuals

0.7 Million
Households
1.8 Million
Individuals

0.6 Million
Households
1.4 Million
Individuals

1.8 Million
Households
4.8 Million
Individuals

5.6 Million 
Households
17.6 Million 
Individuals



Data: Summary of Reviewed 
Models

Model
Aspect

SF-CHAMP SACSIM MORPC CEMDAP  SimAGENT  

Model 
estimation 
data

1990 SF Bay Area
Household Travel
Survey Data of
1100 HHs on SF
County, stated
preference survey
of 609HHs for
transit related
Preferences

Household  
activity
diary survey

1999 Household 
travel survey 
data of 5500 
HHs in the 
Columbus 
region, on-board 
transit survey 
data

1996 
Household 
travel survey 
data of 3500 
households in 
DFW, on-
board transit 
survey data

California 
Department of 
Finance (DOF) E-5 
Population and
Housing Estimates; 
California
Employment 
Development 
Department (EDD) 
2005 Benchmark

Network 
zones (TAZs)

1,900
1,300 (as 
well as 
parcels)

2,000 (w/ 3 
transit access 
zones in each 
zone)

4784
4192 (as well as 
parcels)

Network 
time  periods

5 per day 4 per day 5 per day 5 per day 4 per day

Predicted 
time periods

5 per day 30 min 1 hour
continuous 
time (1 min)

continuous time
(1 min)



Decision to undertake independent discretionary activity 

(model GA16)

For each child not undertaking joint discretionary activity

Decision of household to 

undertake grocery shopping 

(model GA17)

Decision to undertake shopping 

given that household 

undertakes grocery shopping 

(model GA18)

For each adult

Activity allocated to 

the single adult

Decision to undertake personal/household business activities 

(model GA19)

For each adult

Decision to undertake social/recreational activities          

(model GA20)

For each adult

Decision to undertake eat-out activities                            

(model GA21)

For each adult

Decision to undertake other serve-passenger activities   

(model GA22)

For each adult

No

Single adult 

household

Multiple adult 

household

Yes

Decision to undertake independent discretionary activity 

(model GA16)

For each child not undertaking joint discretionary activity

Decision of household to 

undertake grocery shopping 

(model GA17)

Decision to undertake shopping 

given that household 

undertakes grocery shopping 

(model GA18)

For each adult

Activity allocated to 

the single adult

Decision to undertake personal/household business activities 

(model GA19)

For each adult

Decision to undertake social/recreational activities          

(model GA20)

For each adult

Decision to undertake eat-out activities                            

(model GA21)

For each adult

Decision to undertake other serve-passenger activities   

(model GA22)

For each adult

No

Single adult 

household

Multiple adult 

household

Yes

For every household model activity 
participation using MDCEV Model

How MDCEV alters CEMDAP



 Incorporating joint activity alters travel scheduling process 
substantially

 MDCEV provides us the household members for joint activity

 Need to ensure spatial and temporal consistency among the 
joint activity participants

 Determining when and where the joint activity is pursued forms 
an additional pin around which individual travel is scheduled

 Currently we follow the following precedence
 Children travel needs
 Commuter travel needs
 Joint travel (excluding children travel needs)
 Individual travel



YesYes

Yes

Joint

Drop-off child at School

Travel from home to school zone

Activity duration at stop = 5 minutes

NoYes

No

Yes

No Stops
Go Home

If (joint activity start time) –

(current time + travel time to 

joint activity location) > 15

No

Does non-worker participate in joint activity?

Does non-worker undertake 

independent activities?

Number of stops in the 

work to home commute

(model WSCH2)

Go Home
Go to Joint 

Activity Location

Go Home

Stops Module

If joint activity start time –

(current time + travel time to 

home from school) > 15

If “no joint activity” or “joint travel” or “(joint activity start time) –

(current time + travel time to joint activity location) > 15”

Go to Joint 

Activity Location

Go Home

No

Is travel to joint activity joint or separate?

Separate

Illustration of Non-work Drop-off tour



Summary

 Several multiple discrete continuous choice contexts can 
be modeled using MDCEV

 MDCEV is an effective tool to address the computational 
and behavioral challenges to model activity participation 
(while incorporating joint activity  participation seamlessly)

 The computational advantages are evident based on the 
numbers provided

 CEMDAP (within SimAGENT), in its latest version, will 
feature MDCEV



A NEW ESTIMATION APPROACH FOR 
DISCRETE CHOICE MODELING SYSTEMS



Motivation

 Simulation techniques:

 Maximum Simulated Likelihood (MSL) Approach 

 Approach gets imprecise, develops convergence problems, and 
becomes computationally expensive with the increase in the 
number of ordered-response outcomes  

 Bayesian Inference Approach

 Unfortunately, the method remains cumbersome, requires 
extensive simulation, and is time-consuming

 Overall, simulation-based approaches become impractical or even 
infeasible as the number of ordered-response outcomes increases 



 Another solution to such problems is the use of the Composite 
Marginal Likelihood (CML) approach. The CML approach…

 Belongs to the more general class of composite likelihood function approaches 

 Is based on forming a surrogate likelihood function that compounds much 
easier-to-compute, lower-dimensional, marginal likelihoods 

 Represents a conceptually and pedagogically simpler simulation-free 
procedure relative to simulation techniques

 Can be applied using simple optimization software for likelihood estimation

 Is typically more robust, and has the advantage of reproducibility of the 
results 

Motivation



 We demonstrate the use of the CML approach in a pairwise marginal 
likelihood setting

 The pairwise marginal likelihood is formed by the product of likelihood 
contributions of all subset of couplets (i.e., pairs of variables or pairs of 
observations)

 Under the usual regularity assumptions, the CML (and hence, the pairwise 
marginal likelihood) estimator is consistent and asymptotically normal 
distributed

 This is because of the unbiasedness of the CML score function, which is a 
linear combination of proper score functions associated with the marginal 
event probabilities forming the composite likelihood

Motivation



Motivation

 Compare the performance of the MSL approach with the CML approach when 
the MSL approach is feasible

 Undertake a comparison in the context of an ordered-response setting with 
different correlation structures and with:

 cross-sectional data, and 

 panel data 

 Use simulated data sets to evaluate the two estimation approaches

 Examine the performance of the MSL and CML approaches in terms of:

 The ability of the two approaches to recover model parameters  

 Relative efficiency, and 

 Non-convergence and computational cost



Focus on Ordered Response Systems

 Ordered response model systems are used when analyzing ordinal 
discrete outcome data that may be considered as manifestations of an 
underlying scale that is endowed with a natural ordering

 Examples include

 Ratings data (of consumer products, bonds, credit evaluation, movies, etc.)

 Likert-scale type attitudinal/opinion data (of air pollution levels, traffic 
congestion levels, school academic curriculum satisfaction levels, teacher 
evaluations, etc.)

 Grouped data (such as bracketed income data in surveys or discretized 
rainfall data)

 Count data (such as the number of trips made by a household, the number 
of episodes of physical activity pursued by an individual, and the number of 

cars owned by a household)



 There is an abundance of applications of the ordered-response 
model in the literature

 Examples include applications in the sociological, biological, 
marketing, and transportation sciences 

 Mostly one outcome variable, though there have been some 
applications with 2 to 3 outcome variables

 However, the examination of more than three correlated 
outcomes is rare because of difficulty associated with medium-
to-high dimensional integration

Focus on Ordered Response Systems



 Cross-sectional examples of multiple outcome variables

 Number of episodes of each of several activities

 Satisfaction levels associated with a related set of 
products/services

 Multiple ratings measures regarding the state of health of an 
individual/organization

 Time-series or panel examples of multiple outcome variables

 Rainfall levels (measured in grouped categories) over time in 
each of several spatial regions

 Individual stop-making behavior over multiple days in a 
week

 Individual headache severity levels at different points in time

Focus on Ordered Response Systems



Econometric Framework

Multivariate Ordered-Response Model System - Cross-Sectional Formulation (CMOP Model)



Econometric Framework
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Econometric Framework
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Econometric Framework

Multivariate Ordered-Response Model System - Panel Formulation (PMOP Model)



Econometric Framework



Estimation Approaches

 Simulation Approaches

 The Frequentist Approach – Maximum Simulated Likelihood (MSL) Method

 The Bayesian Approach

 Simulators Used in the Current Paper

 The GHK Probability Simulator for the CMOP Model

 The GB Simulator for the PMOP Model

 The CML Technique – The Pairwise Marginal Likelihood Inference 
Approach

 Pairwise Likelihood Approach 

 The CMOP Model

 The PMOP Model

 Positive-Definiteness of the Correlation Matrix 



 Named after John F. Geweke, Vassilis A. Hajivassiliou, and Michael P. 
Keane

 The GHK is perhaps the most widely used probability simulator for 
integration of the multivariate normal density function

 The simulator is based on directly approximating the probability of a 
multivariate rectangular region of the multivariate normal density 
distribution

The GHK Probability Simulator for the CMOP Model

Estimation Approaches
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Estimation Approaches

The GHK Probability Simulator for the CMOP Model (cont.)



 L is the lower triangular Cholesky decomposition of the correlation 
matrix Σ, and vq terms are independent and identically distributed 
standard normal deviates

 Vq are drawn d times (d = 1, 2, …, 100) from the univariate standard 
normal distribution with pre-specified lower and upper bounds

 We use a randomized Halton draw procedure to generate the d
realizations 

 The positive definiteness of Σ was ensured by parameterizing the 
likelihood function with the elements of L

Estimation Approaches

The GHK Probability Simulator for the CMOP Model (cont.)



 Named after Alan Genz and Frank Bretz

 Provides an alternative simulation-based approximation of multivariate 
normal probabilities

 The approach involves

 Transforming the original hyper-rectangle integral region to an integral 
over a unit hypercube

 Filling the transformed integral region by randomized lattice points

 Deriving robust integration error bounds by means of additional shifts of 
the integration nodes in random directions 

 The positive-definite correlation matrix is ensured by defining the 
parameter spaces, so that σ >0 and 0< ρ <1 

The GB Simulator for the PMOP Model

Estimation Approaches



Estimation Approaches

Pairwise Likelihood Approach for the CMOP Model
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Estimation Approaches

Pairwise Likelihood Approach for the PMOP Model
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Experimental Design

The CMOP Model

 Multivariate ordered response system with five ordinal variables

 Low error correlation structure 

 High error correlation structure 

 δ vector with pre-specified values 

 20 independent data sets with 1000 data points

 The GHK simulator is applied to each data set  

 Using 100 draws per individual of the randomized Halton sequence

 10 times with different (independent) randomized Halton draw sequences

)low(Σ

)high(Σ



Experimental Design

The PMOP Model
 Multivariate ordered response system with six ordinal variables

 Low autoregressive correlation parameter (ρ=0.3)

 High autoregressive correlation parameter (ρ=0.7) 

 δ vector with pre-specified values 

 100 independent data sets with 200 subjects and 6 “observation” per 
subject

 The GB simulator is applied to each data set  

 10 times with different (independent) random draw sequences

 With  an absolute error tolerance of 0.001



Performance Measures

 Parameter Estimates

 Mean estimate

 Absolute percentage bias

 Standard Error Estimates

 Finite sample standard error

 Asymptotic standard error 

 In addition, for MSL approach we estimated:

 Simulation standard error

 Simulation adjusted standard error



Performance Measures

 Relative Efficiencies

 Ratio between the MSL and CML asymptotic standard errors 

 Ratio between the simulation adjusted standard error and the 
CML asymptotic standard error 

 Non-convergence Rates

 Relative Computational Time Factor (RCTF)



Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Coefficients

β11 0.5000 0.5167 3.34% 0.0481 0.0399 0.0014 0.0399 0.5021 0.43% 0.0448 0.0395 1.0109 1.0116

β21 1.0000 1.0077 0.77% 0.0474 0.0492 0.0005 0.0492 1.0108 1.08% 0.0484 0.0482 1.0221 1.0222

β31 0.2500 0.2501 0.06% 0.0445 0.0416 0.0010 0.0416 0.2568 2.73% 0.0252 0.0380 1.0957 1.0961

β12 0.7500 0.7461 0.52% 0.0641 0.0501 0.0037 0.0503 0.7698 2.65% 0.0484 0.0487 1.0283 1.0311

β22 1.0000 0.9984 0.16% 0.0477 0.0550 0.0015 0.0550 0.9990 0.10% 0.0503 0.0544 1.0100 1.0104

β32 0.5000 0.4884 2.31% 0.0413 0.0433 0.0017 0.0434 0.5060 1.19% 0.0326 0.0455 0.9518 0.9526

β42 0.2500 0.2605 4.19% 0.0372 0.0432 0.0006 0.0432 0.2582 3.30% 0.0363 0.0426 1.0149 1.0150

β13 0.2500 0.2445 2.21% 0.0401 0.0346 0.0008 0.0346 0.2510 0.40% 0.0305 0.0342 1.0101 1.0104

β23 0.5000 0.4967 0.66% 0.0420 0.0357 0.0021 0.0358 0.5063 1.25% 0.0337 0.0364 0.9815 0.9833

β33 0.7500 0.7526 0.34% 0.0348 0.0386 0.0005 0.0386 0.7454 0.62% 0.0441 0.0389 0.9929 0.9930

β14 0.7500 0.7593 1.24% 0.0530 0.0583 0.0008 0.0583 0.7562 0.83% 0.0600 0.0573 1.0183 1.0184

β24 0.2500 0.2536 1.46% 0.0420 0.0486 0.0024 0.0487 0.2472 1.11% 0.0491 0.0483 1.0067 1.0079

β34 1.0000 0.9976 0.24% 0.0832 0.0652 0.0017 0.0652 1.0131 1.31% 0.0643 0.0633 1.0298 1.0301

β44 0.3000 0.2898 3.39% 0.0481 0.0508 0.0022 0.0508 0.3144 4.82% 0.0551 0.0498 1.0199 1.0208

β15 0.4000 0.3946 1.34% 0.0333 0.0382 0.0014 0.0382 0.4097 2.42% 0.0300 0.0380 1.0055 1.0061

β25 1.0000 0.9911 0.89% 0.0434 0.0475 0.0016 0.0475 0.9902 0.98% 0.0441 0.0458 1.0352 1.0358

β35 0.6000 0.5987 0.22% 0.0322 0.0402 0.0007 0.0402 0.5898 1.69% 0.0407 0.0404 0.9959 0.9961

Simulation Results – The CMOP Model (∑low)



Simulation Results – The CMOP Model (∑low)

Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Correlation Coefficients

ρ12 0.3000 0.2857 4.76% 0.0496 0.0476 0.0020 0.0476 0.2977 0.77% 0.0591 0.0467 1.0174 1.0184

ρ13 0.2000 0.2013 0.66% 0.0477 0.0409 0.0019 0.0410 0.2091 4.56% 0.0318 0.0401 1.0220 1.0231

ρ14 0.2200 0.1919 12.76% 0.0535 0.0597 0.0035 0.0598 0.2313 5.13% 0.0636 0.0560 1.0664 1.0682

ρ15 0.1500 0.1739 15.95% 0.0388 0.0439 0.0040 0.0441 0.1439 4.05% 0.0419 0.0431 1.0198 1.0239

ρ23 0.2500 0.2414 3.46% 0.0546 0.0443 0.0040 0.0445 0.2523 0.92% 0.0408 0.0439 1.0092 1.0133

ρ24 0.3000 0.2960 1.34% 0.0619 0.0631 0.0047 0.0633 0.3013 0.45% 0.0736 0.0610 1.0342 1.0372

ρ25 0.1200 0.1117 6.94% 0.0676 0.0489 0.0044 0.0491 0.1348 12.34% 0.0581 0.0481 1.0154 1.0194

ρ34 0.2700 0.2737 1.37% 0.0488 0.0515 0.0029 0.0516 0.2584 4.28% 0.0580 0.0510 1.0094 1.0110

ρ35 0.2000 0.2052 2.62% 0.0434 0.0378 0.0022 0.0378 0.1936 3.22% 0.0438 0.0391 0.9662 0.9678

ρ45 0.2500 0.2419 3.25% 0.0465 0.0533 0.0075 0.0538 0.2570 2.78% 0.0455 0.0536 0.9937 1.0034



Simulation Results – The CMOP Model (∑low)

Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Threshold Parameters

θ1
1 -1.0000 -1.0172 1.72% 0.0587 0.0555 0.0007 0.0555 -1.0289 2.89% 0.0741 0.0561 0.9892 0.9893

θ1
2 1.0000 0.9985 0.15% 0.0661 0.0554 0.0011 0.0554 1.0010 0.10% 0.0536 0.0551 1.0063 1.0065

θ1
3 3.0000 2.9992 0.03% 0.0948 0.1285 0.0034 0.1285 2.9685 1.05% 0.1439 0.1250 1.0279 1.0282

θ2
1 0.0000 -0.0172 - 0.0358 0.0481 0.0007 0.0481 -0.0015 - 0.0475 0.0493 0.9750 0.9751

θ2
2 2.0000 1.9935 0.32% 0.0806 0.0831 0.0030 0.0831 2.0150 0.75% 0.0904 0.0850 0.9778 0.9784

θ3
1 -2.0000 -2.0193 0.97% 0.0848 0.0781 0.0019 0.0781 -2.0238 1.19% 0.0892 0.0787 0.9920 0.9923

θ3
2 -0.5000 -0.5173 3.47% 0.0464 0.0462 0.0005 0.0462 -0.4968 0.64% 0.0519 0.0465 0.9928 0.9928

θ3
3 1.0000 0.9956 0.44% 0.0460 0.0516 0.0011 0.0516 1.0014 0.14% 0.0584 0.0523 0.9877 0.9879

θ3
4 2.5000 2.4871 0.52% 0.0883 0.0981 0.0040 0.0982 2.5111 0.44% 0.0735 0.1002 0.9788 0.9796

θ4
1 1.0000 0.9908 0.92% 0.0611 0.0615 0.0031 0.0616 1.0105 1.05% 0.0623 0.0625 0.9838 0.9851

θ4
2 3.0000 3.0135 0.45% 0.1625 0.1395 0.0039 0.1396 2.9999 0.00% 0.1134 0.1347 1.0356 1.0360

θ5
1 -1.5000 -1.5084 0.56% 0.0596 0.0651 0.0032 0.0652 -1.4805 1.30% 0.0821 0.0656 0.9925 0.9937

θ5
2 0.5000 0.4925 1.50% 0.0504 0.0491 0.0017 0.0492 0.5072 1.44% 0.0380 0.0497 0.9897 0.9903

θ5
3 2.0000 2.0201 1.01% 0.0899 0.0797 0.0017 0.0798 2.0049 0.24% 0.0722 0.0786 1.0151 1.0154

Overall mean 

value across 

parameters

- 2.21% 0.0566 0.0564 0.0022 0.0564 - 1.92% 0.0562 0.0559 1.0080 1.0092



Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Coefficients

β11 0.5000 0.5063 1.27% 0.0300 0.0294 0.0020 0.0294 0.5027 0.54% 0.0292 0.0317 0.9274 0.9294

β21 1.0000 1.0089 0.89% 0.0410 0.0391 0.0026 0.0392 1.0087 0.87% 0.0479 0.0410 0.9538 0.9560

β31 0.2500 0.2571 2.85% 0.0215 0.0288 0.0017 0.0289 0.2489 0.42% 0.0251 0.0290 0.9943 0.9961

β12 0.7500 0.7596 1.27% 0.0495 0.0373 0.0028 0.0374 0.7699 2.65% 0.0396 0.0395 0.9451 0.9477

β22 1.0000 1.0184 1.84% 0.0439 0.0436 0.0036 0.0437 1.0295 2.95% 0.0497 0.0463 0.9419 0.9451

β32 0.5000 0.5009 0.17% 0.0343 0.0314 0.0023 0.0315 0.5220 4.39% 0.0282 0.0352 0.8931 0.8955

β42 0.2500 0.2524 0.96% 0.0284 0.0294 0.0021 0.0294 0.2658 6.34% 0.0263 0.0315 0.9318 0.9343

β13 0.2500 0.2473 1.08% 0.0244 0.0233 0.0015 0.0234 0.2605 4.18% 0.0269 0.0251 0.9274 0.9293

β23 0.5000 0.5084 1.67% 0.0273 0.0256 0.0020 0.0256 0.5100 2.01% 0.0300 0.0277 0.9221 0.9248

β33 0.7500 0.7498 0.02% 0.0302 0.0291 0.0019 0.0291 0.7572 0.96% 0.0365 0.0318 0.9150 0.9170

β14 0.7500 0.7508 0.11% 0.0416 0.0419 0.0039 0.0420 0.7707 2.75% 0.0452 0.0450 0.9302 0.9341

β24 0.2500 0.2407 3.70% 0.0311 0.0326 0.0033 0.0327 0.2480 0.80% 0.0234 0.0363 0.8977 0.9022

β34 1.0000 1.0160 1.60% 0.0483 0.0489 0.0041 0.0491 1.0000 0.00% 0.0360 0.0513 0.9532 0.9566

β44 0.3000 0.3172 5.72% 0.0481 0.0336 0.0028 0.0337 0.3049 1.62% 0.0423 0.0368 0.9133 0.9165

β15 0.4000 0.3899 2.54% 0.0279 0.0286 0.0026 0.0288 0.4036 0.90% 0.0274 0.0301 0.9516 0.9554

β25 1.0000 0.9875 1.25% 0.0365 0.0391 0.0036 0.0393 1.0008 0.08% 0.0452 0.0398 0.9821 0.9862

β35 0.6000 0.5923 1.28% 0.0309 0.0316 0.0030 0.0317 0.6027 0.45% 0.0332 0.0329 0.9607 0.9649

Simulation Results – The CMOP Model (∑high)



Simulation Results – The CMOP Model (∑high)

Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Correlation Coefficients

ρ12 0.9000 0.8969 0.34% 0.0224 0.0177 0.0034 0.0180 0.9019 0.21% 0.0233 0.0183 0.9669 0.9845

ρ13 0.8000 0.8041 0.51% 0.0174 0.0201 0.0035 0.0204 0.8009 0.11% 0.0195 0.0203 0.9874 1.0023

ρ14 0.8200 0.8249 0.60% 0.0284 0.0265 0.0061 0.0272 0.8151 0.60% 0.0296 0.0297 0.8933 0.9165

ρ15 0.7500 0.7536 0.49% 0.0248 0.0243 0.0046 0.0247 0.7501 0.01% 0.0242 0.0251 0.9678 0.9849

ρ23 0.8500 0.8426 0.87% 0.0181 0.0190 0.0081 0.0207 0.8468 0.38% 0.0190 0.0198 0.9606 1.0438

ρ24 0.9000 0.8842 1.75% 0.0187 0.0231 0.0097 0.0251 0.9023 0.26% 0.0289 0.0244 0.9484 1.0284

ρ25 0.7200 0.7184 0.22% 0.0241 0.0280 0.0072 0.0289 0.7207 0.09% 0.0295 0.0301 0.9298 0.9600

ρ34 0.8700 0.8724 0.27% 0.0176 0.0197 0.0036 0.0200 0.8644 0.65% 0.0208 0.0220 0.8972 0.9124

ρ35 0.8000 0.7997 0.04% 0.0265 0.0191 0.0039 0.0195 0.7988 0.15% 0.0193 0.0198 0.9645 0.9848

ρ45 0.8500 0.8421 0.93% 0.0242 0.0231 0.0128 0.0264 0.8576 0.89% 0.0192 0.0252 0.9156 1.0480



Para-
meter

True 
Value

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

Threshold Parameters

θ1
1 -1.0000 -1.0110 1.10% 0.0600 0.0520 0.0023 0.0520 -1.0322 3.22% 0.0731 0.0545 0.9538 0.9548

θ1
2 1.0000 0.9907 0.93% 0.0551 0.0515 0.0022 0.0515 1.0118 1.18% 0.0514 0.0528 0.9757 0.9766

θ1
3 3.0000 3.0213 0.71% 0.0819 0.1177 0.0065 0.1179 2.9862 0.46% 0.1185 0.1188 0.9906 0.9921

θ2
1 0.0000 -0.0234 - 0.0376 0.0435 0.0028 0.0436 0.0010 - 0.0418 0.0455 0.9572 0.9592

θ2
2 2.0000 2.0089 0.44% 0.0859 0.0781 0.0066 0.0784 2.0371 1.86% 0.0949 0.0823 0.9491 0.9525

θ3
1 -2.0000 -2.0266 1.33% 0.0838 0.0754 0.0060 0.0757 -2.0506 2.53% 0.0790 0.0776 0.9721 0.9752

θ3
2 -0.5000 -0.5086 1.73% 0.0305 0.0440 0.0030 0.0441 -0.5090 1.80% 0.0378 0.0453 0.9702 0.9725

θ3
3 1.0000 0.9917 0.83% 0.0516 0.0498 0.0035 0.0499 0.9987 0.13% 0.0569 0.0509 0.9774 0.9798

θ3
4 2.5000 2.4890 0.44% 0.0750 0.0928 0.0066 0.0930 2.5148 0.59% 0.1144 0.0956 0.9699 0.9724

θ4
1 1.0000 0.9976 0.24% 0.0574 0.0540 0.0050 0.0542 1.0255 2.55% 0.0656 0.0567 0.9526 0.9566

θ4
2 3.0000 3.0101 0.34% 0.1107 0.1193 0.0125 0.1200 3.0048 0.16% 0.0960 0.1256 0.9498 0.9550

θ5
1 -1.5000 -1.4875 0.84% 0.0694 0.0629 0.0056 0.0632 -1.5117 0.78% 0.0676 0.0649 0.9699 0.9737

θ5
2 0.5000 0.4822 3.55% 0.0581 0.0465 0.0041 0.0467 0.4968 0.64% 0.0515 0.0472 0.9868 0.9906

θ5
3 2.0000 1.9593 2.03% 0.0850 0.0741 0.0064 0.0744 2.0025 0.12% 0.0898 0.0761 0.9735 0.9771

Overall mean 

value across 

parameters

- 1.22% 0.0429 0.0428 0.0044 0.0432 - 1.28% 0.0455 0.0449 0.9493 0.9621

Simulation Results – The CMOP Model (∑high)



Simulation Results – The PMOP Model

Para-
meter

True 
Value

MSL Approach CML Approach Rel. Eff.

Parameter
Estimates

Standard Error (SE) Estimates
Parameter
Estimates

Standard Error 
(SE) Estimates

A
C

B
C

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(A)

Simula-
tion SE

Simula-
tion Adj. 
SE (B)

Mean
Abs. % 

Bias

Finite 
Sample 

SE

Asymp-
totic SE 

(C)

ρ = 0.30

β1 1.0000 0.9899 1.01% 0.1824 0.1956 0.0001 0.1956 0.9935 0.65% 0.1907 0.1898 1.0306 1.0306

β2 1.0000 1.0093 0.93% 0.1729 0.1976 0.0001 0.1976 1.0221 2.21% 0.1955 0.2142 0.9223 0.9223

ρ 0.3000 0.2871 4.29% 0.0635 0.0605 0.0000 0.0605 0.2840 5.33% 0.0632 0.0673 0.8995 0.8995

σ2 1.0000 1.0166 1.66% 0.2040 0.2072 0.0002 0.2072 1.0142 1.42% 0.2167 0.2041 1.0155 1.0155

θ1 1.5000 1.5060 0.40% 0.2408 0.2615 0.0001 0.2615 1.5210 1.40% 0.2691 0.2676 0.9771 0.9771

θ2 2.5000 2.5129 0.52% 0.2617 0.2725 0.0002 0.2725 2.5272 1.09% 0.2890 0.2804 0.9719 0.9719

θ3 3.0000 3.0077 0.26% 0.2670 0.2814 0.0002 0.2814 3.0232 0.77% 0.2928 0.2882 0.9763 0.9763

Overall mean value 
across parameters

- 1.29% 0.1989 0.2109 0.0001 0.2109 - 1.84% 0.2167 0.2159 0.9705 0.9705

ρ = 0.70

β1 1.0000 1.0045 0.45% 0.2338 0.2267 0.0001 0.2267 1.0041 0.41% 0.2450 0.2368 0.9572 0.9572

β2 1.0000 1.0183 1.83% 0.1726 0.1812 0.0001 0.1812 1.0304 3.04% 0.1969 0.2199 0.8239 0.8239

ρ 0.7000 0.6854 2.08% 0.0729 0.0673 0.0001 0.0673 0.6848 2.18% 0.0744 0.0735 0.9159 0.9159

σ2 1.0000 1.0614 6.14% 0.4634 0.4221 0.0004 0.4221 1.0571 5.71% 0.4864 0.4578 0.9220 0.9220

θ1 1.5000 1.5192 1.28% 0.2815 0.2749 0.0002 0.2749 1.5304 2.03% 0.3101 0.3065 0.8968 0.8968

θ2 2.5000 2.5325 1.30% 0.3618 0.3432 0.0003 0.3432 2.5433 1.73% 0.3904 0.3781 0.9076 0.9076

θ3 3.0000 3.0392 1.31% 0.4033 0.3838 0.0003 0.3838 3.0514 1.71% 0.4324 0.4207 0.9123 0.9123
Overall mean value 
across parameters

- 2.06% 0.2842 0.2713 0.0002 0.2713 - 2.40% 0.3051 0.2990 0.9051 0.9051



Simulation Results

 Non-convergence rates

 The CMOP Model

 Low correlation case: 28.5% 

 High correlation case: 35.5% 

 The PMOP Model

 Low correlation case: 4.2% 

 High correlation case: 2.4% 



 Relative Computational Time Factor (RCTF)

 The CMOP Model

 Low correlation case: 18

 High correlation case: 40

 The PMOP Model

 Low correlation case: 332 

 High correlation case: 231

Simulation Results



Summary and Conclusions

 Compared the performance of the MSL approach with the CML 
approach in multivariate ordered-response situations

 Cross-sectional setting, and

 Panel setting

 Simulation data sets with known parameter vectors were used

 The results indicate that the CML approach recovers parameters as 
well as the MSL estimation approach 

 In addition, the ability of the CML approach to recover the parameters 
seems to be independent of the correlation structure



 The CML approach recovers parameters at a substantially reduced 
computational cost and improved computational stability

 Any reduction in the efficiency of the CML approach relative to the 
MSL approach is in the range of non-existent to small

Summary and Conclusions



Unordered Response Context

 “Workhorse” multinomial logit is saddled with the problem of IIA

 Several ways to relax the IID assumption
 Multinomial Probit
 GEV class of models
 Mixed MNL

 Mixed MNL models are conceptually appealing

 These methods employ simulation based approaches to tackle 
integration within the likelihood function.
 Accuracy of simulation techniques degrades rapidly at 

medium-to-high dimensions, and simulation noise increases 
convergence problems 

 Impractical in terms of computation time, or even infeasible, 
as the number of alternatives grows in the multinomial 
choice situation



Problem at Hand

 Consider a random utility formulation in which the utility 
that an individual q associates with alternative i (i = 1, 2, 
…, I) is written as:

 The probability of choosing alternative m

 Alternatively                                     ,       where

qiqiqi xU

][Prob][Prob mixxmiUUP qiqiqmqmqiqmqm

]0[Prob * miyP qimqm

)(  and  )(  ,*

qmqiqimqmqiqimqimqimqmqiqim xxzzUUy



Simulation Exercise – Cross-sectional MNP

Parameter

MNP MSL (150 Halton draws) MNP MOPA

True 

Value

Mean 

Estimate

Mean 

Standard 

Error

Absolute 

Bias

Absolute 

Percentage 

Bias

True Value
Mean 

Estimate

Mean 

Standard 

Error

Absolute 

Bias

Absolute 

Percentage 

Bias

β1 1.5000 1.3492 0.1254 0.1508 10.05 1.5000 1.5246 0.1855 0.0246 1.64

β2 -1.0000 -0.8924 0.0860 0.1076 10.76 -1.0000 -1.0075 0.1250 0.0075 0.75

β3 2.0000 1.7869 0.1635 0.2131 10.66 2.0000 2.0193 0.2434 0.0193 0.97

β4 1.0000 0.8977 0.0866 0.1023 10.23 1.0000 1.0155 0.1262 0.0155 1.55

β5 2.0000 -1.7977 0.1647 0.2023 10.12 2.0000 -2.0310 0.2443 0.0310 1.55

1.0000 0.8929 0.1105 0.1071 10.71 1.0000 1.0147 0.1484 0.0147 1.47

1.0000 0.8899 0.1079 0.1101 11.01 1.0000 1.0213 0.1495 0.0213 2.13

1.0000 0.8756 0.1102 0.1244 12.44 1.0000 1.0012 0.1509 0.0012 0.12

1.0000 0.8816 0.1091 0.1184 11.84 1.0000 1.0051 0.1477 0.0051 0.51

1.0000 0.8952 0.1142 0.1048 10.48 1.0000 1.0173 0.1519 0.0173 1.73

Number of Runs : 50

1

2

3

4

5



Simulation Exercise – Cross-sectional MNP

Parameter

MNP MSL (150 Scrambled Halton draws) MNP MOPA

True 

Value

Mean 

Estimate

Mean 

Standard 

Error

Absolute 

Bias

Absolute 

Percentage 

Bias

True Value
Mean 

Estimate

Mean 

Standard 

Error

Absolute 

Bias

Absolute 

Percentage 

Bias

β1 1.5000 1.3395 0.1267 0.1605 10.70 1.5000 1.5246 0.1855 0.0246 1.64

β2 -1.0000 -0.8866 0.0867 0.1134 11.34 -1.0000 -1.0075 0.1250 0.0075 0.75

β3 2.0000 1.7731 0.1654 0.2269 11.35 2.0000 2.0193 0.2434 0.0193 0.97

β4 1.0000 0.8900 0.0869 0.1100 11.00 1.0000 1.0155 0.1262 0.0155 1.55

β5 2.0000 -1.7830 0.1662 0.2170 10.85 2.0000 -2.0310 0.2443 0.0310 1.55

1.0000 0.8837 0.1077 0.1163 11.63 1.0000 1.0147 0.1484 0.0147 1.47

1.0000 0.8814 0.1069 0.1186 11.86 1.0000 1.0213 0.1495 0.0213 2.13

1.0000 0.8729 0.1103 0.1271 12.71 1.0000 1.0012 0.1509 0.0012 0.12

1.0000 0.8680 0.1061 0.1320 13.20 1.0000 1.0051 0.1477 0.0051 0.51

1.0000 0.8927 0.1114 0.1073 10.73 1.0000 1.0173 0.1519 0.0173 1.73

Number of Runs : 50

1

2

3

4

5



Summary and Conclusions

All these factors, combined with the conceptual and implementation 

simplicity of our approach, makes the approach promising



Thank You

Web Site: 

http://www.ce.utexas.edu/prof/bhat


