Metropolitan Travel Forecasting Models:

Trends, Possibilities and Priorities.

Vladimir Livshits

Maricopa Association of Governments

May, 2010

IBM 704 - Electronic Computer central panel used for tabulating the Survey data.

Copyright © 2010

Slide 2

Prediction is very difficult, especially about the future.

Niels Bohr, Danish physicist

The best way to predict the future is to invent it.

Alan Kay, American Computer Scientist

The future ain't what it used to be.

Yogi Berra, New York Philosopher

Forecast is a negotiation

Copyright © 2010

Slide 3

12th TRB National Transportation Planning Applications Conference – May 17-21, 2009, Houston, Texas

MODELLING SOFTWARE TREND II: Vistor 2014 rereated in 2004, Vindens Londah

Automation

- · Information hiding: pre-prepared "black" boxes of large model blocks
- · Analysis, standardization and automation of most commonly used models and methods

ernale = 2004, Vielana Levilati

· User-friendliness of the modelling procedures, clear interfaces, following the accepted interface practices

movement?	
Problems complexity	Methodology
Transportation systems, land use, urban forms, human behavior, environmental issues, sustainability ounce. Transportation systems, land use, urban forms, human behavior, environmental issues Transportation and the statemental issues.	Dynamic simulations, activi nodelling, disaggregate modelling, four steps Dynamic simulations. Disaggregate modelling, fou
Transportation systems, land use, orbuit forms, human behavior	Disaggregate modelling, for
Traffic, land use, mbas form	Aggregate modelling, four s
Traffic and land use	Aggregate modelling, four s
Traffic	Extrapolation

grouph of 2004. Visiterer London

opposite + 2004, Vindewa Londata

Water 2014

Water 2004

Planning Methods vs. Problems: concomitant

Top issues in Transport Modelling as identified

- by an international survey (1995)
- 1 Activity Modelling 2. Stated preference choice 3. Location-based choice model-4. GIS as spatial database 5 Revealed stated preference modelling 6 Measures of accessibility 7. Dynamic traffic assignment 8. Travel market segmentation 9. Advanced static choice models 10.Equilibration procedures

11. Survey collection strategies 12 Vehicle ownership models Water 2004

graphi C 2014 Vishou Lindan

Copyright © 2010

Slide 4

Water 2014

MARICOPA ASSOCIATION OF GOVERNMENTS

Water 2004

Modelling Paradigms 2003 (II)

- · Use of iconic, physical models in 50s
- · Domination of mathematical models in 60s
- · Domination of data models in 80s and 90s
- · Return of iconic models utilizing modern software (GIS, microsimulation)

openale C 2004 Vielana Londah

Project ID	PHX07-738	Project Type	TIP
RTP ID		RTP Phase	
Agency ID		Status	Deferred
Lead Agency	Phoenix:	Road Closure	D
Description	Design and construct roadway safety improvements		
Imprmt. Type	Safety		
Mode	Safety		
Facility	Collector Street		
Est. Start Dt.		Est. End Dt.	
Act. Start Dt.		Act. End Dt.	

Copyright © 2010

Slide 5

Copyright © 2010

Slide 6

Copyright © 2010

Slide 7

See presentations from the Tuesday morning session

Copyright © 2010

Slide 8

Copyright © 2010

Slide 9

Main Causality of Technical Innovations in *Regional* Planning and Modeling

Copyright © 2010

Slide 10

Copyright © 2010

Slide 11

Current Policy Issues

Road pricing

- Air quality & greenhouse gases
- Land use policies and TOD
- Alternative mode strategies
- System operations and reliability
- Travel reduction / peaking strategies
- Evacuation / accommodation
- Economic development
- Demographic change

- Climate Change and Environmental Protection Needs
- Sustainability Needs
- Needs to account for Economic Volatility and for Plan Sensitivity
- Needs to Account for Uncertainty
- Needs to Evaluate New Travel Modes and Transportation Technologies
- Needs to Evaluate New Policies and Regulations
- Needs to Reflect New Travel Behavior

Are emerging planning needs threats or opportunities in achieving planning goals/regional visions?

Copyright © 2010

Slide 13

- Dramatic Increase in Computing Power: multiple processors, distributed computing, cloud computing
- Dramatic Decrease in Computational and Storage Costs
- New Web Technologies
- New GIS technologies
- New GPS technologies
- New Technological Expectations
- Lack of New Technological Expertise
- Competitiveness on the HR market

Can Technological Advances help to address new challenges /threats in achieving planning goals?

Slide 14

- Future Staff
 Requirements and
 Availability of
 Technical Expertise
- Life Cycle of existing technologies, maintenance and support cost and availability
- Stakeholders and general public expectations
- Applicability to foreseeable tasks
- Efficiency in execution of typical technical tasks

What are weaknesses and strengths of proposed innovations in terms of advancing regional planning agenda?

Copyright © 2010

Slide 15

Technical Innovations Strata in the Regional Planning Process

Copyright © 2010

Slide 16

Data Stratum: Innovative Planning Tools

- Web-based GUI data access
- Visualization: GIS, Google
- Data Integration (different types of data, historic data, jurisdictional data)
- Enterprise Application Integration (e.g. integration with modeling applications automated model validation tools, with data collection applications - QA/QC, automated data upload)
- Built-in data analysis tools

Data Collection and Management Innovation Decision Matrix

	Threats	Opportunities	 data collection
			• data acquisition
Strengths	Urgent	Not Urgent	/• data analysis
	Not Important e.g. innovative	Not Important e.g. opportunity to	//• data storage
	capitalization on another ongoing	improve data	data security
	project where the need can be addressed with traditional tools as well	uisposai	• data retrieval
			• data access and /dissemination
Weaknesses	Urgent ,	Not Urgent	• data archiving
	Important	Important	 • data disposal
	e.g. innovative approach to address unmet data needs from a	Best Time to introduce innovations	Arrows indicate results of example project level
	major project or stakeholder		decisions on data management innovations

Copyright © 2010

Slide 18

Modeling Stratum: Strengths and Weaknesses

Copyright © 2010

Slide 19

Innovations in Transportation Modeling = Relaxed Modeling Assumptions * Increased Fidelity + Capitalization on Computing Technology

Transportation Modeling Innovation Decision Matrix

	Threats	Opportunities
Strengths	Urgent Not Important e.g. innovative capitalization on another ongoing project where the need can be addressed with traditional tools as well	Not Urgent Not Important e.g. an improvement in the traditional four step based procedure that is not crucial for model applications or future development
Weaknesses	Urgent Important e.g. innovative approach to address unmet data needs from a major project or	Not Urgent Important - Best Time to introduce innovations

• **Paradigm Shift** and /disaggregation – Data Mining and Knowledge Management - Database Approach, ABM

• Enterprise Application Integration and Automation - PMDS, Geo Database, Master Network

• Data Accessibility and Visualization - Webbased GIS technologies, 3D

Arrows indicate results of example project level decisions on data management innovations

Slide 21

Evaluation Stratum: Strengths and Weaknesses

	Disconnect between
100 data	evaluation, data
<u>IIGGISIONS</u>	analysis and modeling,
	necessity for complex
	manual effort
1 Strol morting	Insufficient
JERANAMUN	accessibility of project
	data, ability to easily
	<pre>visualize and query</pre>
YMOOR AS	project information
	Robust manual
	<pre>procedures and</pre>
100-1-	established guidelines
<u> lallal</u>	

Evaluation Stratum and Process Integration Innovations

- New dimensions introduced by both political and technical nature of the process
- Process Integration Issues with other strata
- Visualization and Accessibilityweb based
- Outsourcing and Cooperation vendors

Different questions – different answers

We can ask	Or we can ask
What are the possibilities	What are the priorities
Where the modeling trends will take us	Where we will take the modeling trends
How much it cost to implement an innovation	What is the effectiveness of implementing an innovation
What are the development costs	What are the development and maintenance costs
What percentage of planning costs is in modeling	What percentage of planning, design and building costs is in modeling
What are the benefits of modeling advancements	What are the costs of planning mistakes
If a model delivers a better forecast	When we need a better forecast and if we need a better model

Copyright © 2010

A few questions for conclusion:

- Can we hope for dissemination of innovative modeling tools without propagation of innovative planning processes?
- Can we foresee innovative planning processes without drastically different and pressing planning needs?
- Can we foresee big changes in planning needs by predicting changes in transportation systems and their environments?
- Can we predict changes in transportation systems and their environments by utilizing innovative modeling tools? (go to first question)

Copyright © 2010

Slide 25

Thank You

Copyright © 2010

Slide 26