Deconstructing utility in activity-travel choice models

Sergio R. Jara-Díaz
Universidad de Chile

Contents

- Motivation: Utility for everyone
- The discrete choice paradigm: theory, properties and corollaries.
- Travel and activities: two perspectives on VoT.
- Travel choice as the discrete counterpart of time allocation theories:
- goods-leisure
- goods-activities.
- Conclusions.

Motivation:utility for everyone

- General: people choose what they like most, and people is different. So everything fits in; U(travel cost, travel time, income, gender, frequency, period, seats, other activities, family structure, etc.)?
- Specific: Is it better a quadratic or a linear? Or Cost/income? Better fit? Flexibility?
- Philosophical: Shall we let the data talk?
- Beginning: Where does utility in discrete travel choice come from?

$$
\operatorname{Max}_{j \in M} V\left(\boldsymbol{Q}, Q_{j}, I-c_{j} \rightrightarrows V_{k} ? V_{L} \quad \forall_{k, L \in M}\right.
$$

$$
M U I=\lambda=\frac{\partial V}{\partial I}=-\frac{\partial V_{j}}{\partial c_{j}}
$$

$$
S V q_{j i}=\frac{\partial V_{j} / \partial q_{j i}}{\partial V_{j} / \partial I}
$$

Marginal Utility of Income
Subjective Values

$$
\begin{aligned}
& U \text { 「* }{ }^{*}, Q_{j}, I-c_{j}{ }_{2} Q_{j} \exists V \text { P }, Q_{j}, I-c_{j} \equiv V_{j} \\
& \text { Conditional Indirect Utility Function (truncated) }
\end{aligned}
$$

Some corollaries

- Unless V_{i} is linear, income is income, not a surrogate for either taste or preferences.
- $I-c_{j}$ in $V \rightarrow$ significant second order term in c_{i} implies that MUI depends on Income: income effect in travel choice.

Introducing travel time (and its value).

Perspective 1

Perspective 1

Diminish travel time by paying more...

Perspective 2

Goods-Leisure framework (Train and McFadden;1978)

The individual behaves as if:

$$
\begin{aligned}
& \left.\operatorname{Max}_{\text {S.to }} U \mathbb{G}, L_{-}^{-}\right) \quad U \$ W-c_{i} \div\left(-W-t_{i}{ }^{-}=\right. \\
& G+c_{i} \leq w W \\
& L+W+t_{i}=\tau \\
& i \in M \\
& \begin{array}{l}
\frac{\partial U}{\partial W}=0 \Rightarrow W^{*} \boldsymbol{\epsilon}_{i}, w, t_{i_{-}}^{-} \\
V_{i}=U \boldsymbol{i}_{i}, w, t_{i_{-}}^{-}
\end{array}
\end{aligned}
$$

Discrete analogy of Becker (1965)

Corollaries

- $\operatorname{SVTTS}=w=$ Vo T
- Justifies c_{i} / w as a variable in V_{i}
- Implicit labor supply model
- If income is fixed,
- $c_{/} / g$ in V_{i} if c_{i} / I small
- Use second order terms if c_{i} / l and/or $t_{/ /(T-W)}$ non-negligible

The goods-activities framework

Max U®, X_{-}^{-} subject to

Income constraint (λ)
Total time constraint (μ)
Tecnological constraints (κ)

Leads to

$T *(\ldots .),. \quad X^{*}(\ldots .$.
$U\left[T *(\ldots),. X^{*}(\ldots).\right] \equiv V(\ldots)$

DeSerpa's theory (1971)

$\operatorname{Max} U(X, T)$
(1) $\Sigma P_{i} X_{i}=w T_{w}$
(2) $\Sigma T_{j}=T$
(μ)
(3) $\quad T_{j} \geq a_{j} X_{i}$
$\left(\kappa_{j}\right)$

- κ_{j} / λ : value of a time reduction in constrained activity j (zero for leisure activities)
- μ / λ : value of time as a resource (value of leisure)
- $\left(\partial U / \partial T_{j}\right) / \lambda$: value of assigning time to activity j (value of the marginal utility)
F.O.C. \rightarrow
a) $\kappa_{j} / \lambda=\mu / \lambda-\left(\partial U / \partial T_{j}\right) / \lambda$
b) $\mu / \lambda=w+\left(\partial U / \partial T_{w}\right) / \lambda$

Therefore...
b) Value of leisure = total value of work
a) Value of time reduction in travel = value of doing something else - intrinsic value of travel

Corollaries

- Pleasent travel not enough for SVTTS to be negative
- Implicit solution for T_{w}
- Implicit equations for leisure activities

The goods-activities model (Jara-Díaz and Guerra, 2003)
$\operatorname{Max} \quad U=\Omega T_{w}^{\theta_{w}} \prod_{i} T_{i}^{\theta_{i}} \prod_{j} X_{j}^{\eta_{j}}$ subject to

$$
\begin{gathered}
I_{f}+w T_{w}-\sum_{j} P_{j} X_{j} \geq 0 \leftarrow \lambda \\
\tau-T_{w}-\sum_{i} T_{i}=0 \leftarrow \mu \\
T_{i}-T_{i}^{\text {Min. }} \geq 0 \leftarrow \kappa_{i} \forall i \\
X_{j}-X_{j}^{\text {Min }} \geq 0 \leftarrow \varphi_{j} \quad \forall j
\end{gathered}
$$

Work, Leisure, Goods and Travel equations

$$
\begin{aligned}
& T_{w}^{*}=\beta<-T_{c} \ni \alpha \frac{E_{c}}{w}+\sqrt{\left.\left(\beta<-T_{c} \ni \alpha \frac{E_{c}}{w}\right)-<\alpha+2 \beta-1\right\}-T_{c} \frac{E_{c}}{w}} \\
& T_{i}^{*}=\frac{\vartheta_{\mathrm{i}}}{1-2 \beta}\left(\tau-T_{w}^{*}\left(\frac{E_{c}}{w}, T_{c}\right)-T_{c}\right) \quad \forall i \text { not binding } \\
& X_{k}^{*}=\frac{\gamma_{k}}{1-2 \alpha} \frac{w}{P_{k}}\left(T_{w}^{*}\left(\frac{E_{c}}{w}, T_{c}\right)-\frac{E_{c}}{w}\right) \quad \forall k \text { not binding } \\
& V=\widetilde{\Omega} w^{1-2 \alpha}\left(T_{w}^{*}-\frac{E_{c}}{w}\right)^{1-2 \alpha}\left(-T_{w}^{*}-T_{c} \boldsymbol{\lambda}^{\mathbf{2} 2 \beta} T_{w}^{* 2 \alpha+2 \beta-1} \prod_{r \in R} T_{r}^{\text {Min } \theta_{r}} \prod_{j \in J} X_{j}^{\text {Min. } \gamma_{j}}\right.
\end{aligned}
$$

Corollaries

- $T_{i}\left(E_{c}, T_{c}, w\right)$ system looks like a reduced form of a "structural equations" model.
- Values of work, leisure, travel and SVTTS can be calculated
- $T_{w}\left(E_{c}, T_{c}, w\right)$ equation is a more complete labor supply equation (goods-leisure particular case)
- Change in time assignment (labor and leisure activities) can be predicted after changes in E_{c} and/or T_{c}

Conclusions

- Understanding utility as a TCIUF facilitates specification and interpretation
- Behind the TCIUF always is a system of activities and goods consumption equations
- Gross classification of activities:
a. Those one would like to increase but can not because of time budget (leisure);
b. Those one would like to decrease but can not because of technical constraints ;
c. Work and others.
- For b-type activities, Value of reduction = value of doing something else + value of diminishing mandatory time assigned.
- Observed Time Use permits empirical estimations of these values of time using econometric models: transport (three decades), activities.
- Applications so far show that:
- Value of work time can be positive or negative.
- Value of leisure can be different from the wage rate.
- Increasing available time can be more important than travel displeasure.
- Better to use segments than include socio-demographic variables in U.

Motivation for further research

- Time assigned to work is a new Labor Supply model where the marginal utility of work can be different from zero.
- A priori classification of activities can be explored empirically and econometrically.
- Single period (cross-sectional) models may not account for potentially relevant time use related decisions (but...).
- Necessary link with sociology, psychology and biology to further analyze results.

Deconstructing utility in activity-travel choice models

Sergio R. Jara-Díaz
Universidad de Chile

