Deconstructing utility in activity-travel choice models

Sergio R. Jara-Díaz Universidad de Chile

Contents

- Motivation: Utility for everyone
- The discrete choice paradigm: theory, properties and corollaries.
- Travel and activities: two perspectives on VoT.
- Travel choice as the discrete counterpart of time allocation theories:
 - goods-leisure
 - goods-activities.
- Conclusions.

Motivation: utility for everyone

- General: people choose what they like most, and people is different. So everything fits in; U(travel cost, travel time, income, gender, frequency, period, seats, other activities, family structure, etc.)?
- **Specific**: Is it better a quadratic or a linear? Or Cost/income? Better fit? Flexibility?
- Philosophical: Shall we let the data talk?
- Beginning: Where does utility in discrete travel choice come from?

$$\begin{array}{c}
\underbrace{MaxU}_{X,j} & Q_{j} \\
\sum P_{i}X_{i} + c_{j} \leq I \\
J \in M
\end{array} \rightarrow \begin{array}{c}
\underbrace{MaxU}_{X} & Q_{j} \\
\sum P_{i}X_{i} \leq I - c_{j}
\end{array} \rightarrow \begin{array}{c}
X^{*} & Q_{j}, I - c \\
\sum P_{i}X_{i} \leq I - c_{j}
\end{array}$$

$$U [\mathbf{k}^* \mathbf{\Phi}, \mathbf{Q}_j, \mathbf{I} - \mathbf{c}_j] = V \mathbf{\Phi}, \mathbf{Q}_j, \mathbf{I} - \mathbf{c}_j] = V_j$$

Conditional Indirect Utility Function (truncated)

$$\underset{j \in M}{MaxV} (\mathbf{P}, Q_j, I - c_j) \rightarrow V_k ? V_L \quad \forall_{k, L \in M}$$

$$MUI = \lambda = \frac{\partial V}{\partial I} = -\frac{\partial V_j}{\partial c_j}$$

Marginal Utility of Income

$$SVq_{ji} = \frac{\partial V_j / \partial q_{ji}}{\partial V_j / \partial I}$$

Subjective Values

Some corollaries

 Unless V_i is linear, income is income, not a surrogate for either taste or preferences.

I-c_j in V → significant second order term in c_i implies that MUI depends on Income: income effect in travel choice.

Introducing travel time (and its value).

Perspective 1

Diminish travel time by paying more...

Perspective 2

Goods-Leisure framework (Train and McFadden;1978)

The individual behaves as if:

$$Max_{S,to} U G, L
G + c_i \leq wW
L + W + t_i = \tau
i \in M
$$U W - c_i \leq -W - t_i \leq U
\frac{\partial U}{\partial W} = 0 \Rightarrow W^* (c_i, w, t_i)
\vdots V_i = U c_i, W, t_i$$$$

Discrete analogy of Becker (1965)

Corollaries

- SVTTS=w= VoT
- Justifies c_i/w as a variable in V_i
- Implicit labor supply model
- If income is fixed,
 - c_i/g in V_i if c_i/I small
 - Use second order terms if c_i/l and/or t_i/(τ-W) non-negligible

The goods-activities framework

Max U(, X)subject to

Income constraint (λ) Total time constraint (μ) Tecnological constraints (κ)

Leads to

*T**(....), *X**(....)

 $U[T^{*}(...), X^{*}(...)] = V(...)$

DeSerpa's theory (1971)

Max U(X, T)(1) $\Sigma P_i X_i = w T_w$ (λ) (2) $\Sigma T_j = \tau$ (μ) (3) $T_j \ge a_j X_i$ (κ_j)

- κ_j / λ : value of a time reduction in constrained activity j (zero for leisure activities)
- μ / λ : value of time as a resource (value of leisure)
- $(\partial U/\partial T_j)/\lambda$: value of assigning time to activity *j* (value of the marginal utility)

F.O.C. \rightarrow

a) $\kappa_j / \lambda = \mu / \lambda - (\partial U / \partial T_j) / \lambda$ b) $\mu / \lambda = w + (\partial U / \partial T_w) / \lambda$

Therefore...

b) Value of leisure = total value of work

a) Value of time reduction in travel = value of doing something else – intrinsic value of travel

Corollaries

- Pleasent travel not enough for SVTTS to be negative
- Implicit solution for T_w
- Implicit equations for leisure activities

The goods-activities model (Jara-Díaz and Guerra, 2003)

Max
$$U = \Omega T_w^{\theta_w} \prod_i T_i^{\theta_i} \prod_j X_j^{\eta_j}$$

subject to

$$I_{f} + wT_{w} - \sum_{j} P_{j}X_{j} \ge 0 \leftarrow \lambda$$
$$\tau - T_{w} - \sum_{i} T_{i} = 0 \leftarrow \mu$$

$$T_i - T_i^{Min.} \ge 0 \leftarrow \kappa_i \quad \forall i$$

$$X_{j} - X_{j}^{Min} \ge 0 \leftarrow \varphi_{j} \quad \forall j$$

Work, Leisure, Goods and Travel equations

$$T_{w}^{*} = \beta \langle \langle -T_{c} \rangle + \alpha \frac{E_{c}}{w} + \sqrt{\left(\beta \langle \langle -T_{c} \rangle + \alpha \frac{E_{c}}{w}\right) - \left(\alpha + 2\beta - 1\right)} - T_{c} \frac{E_{c}}{w}$$

$$T_i^* = \frac{\vartheta_i}{1 - 2\beta} \left(\tau - T_w^* \left(\frac{E_c}{w}, T_c \right) - T_c \right) \quad \forall i \text{ not binding}$$

$$X_{k}^{*} = \frac{\gamma_{k}}{1 - 2\alpha} \frac{w}{P_{k}} \left(T_{w}^{*} \left(\frac{E_{c}}{w}, T_{c} \right) - \frac{E_{c}}{w} \right) \quad \forall k \text{ not binding}$$

$$V = \widetilde{\Omega}w^{1-2\alpha} \left(T_w^* - \frac{E_c}{w}\right)^{1-2\alpha} \left(-T_w^* - T_c \mathcal{I}^{\ast 2\beta} T_w^{\ast 2\alpha + 2\beta - 1} \prod_{r \in \mathbb{R}} T_r^{Min^{\mathcal{G}_r}} \prod_{j \in J} X_j^{Min.\gamma_j} \right)$$

Corollaries

- T_i (E_c, T_c, w) system looks like a reduced form of a "structural equations" model.
- Values of work, leisure, travel and SVTTS can be calculated
- $T_w (E_c, T_c, w)$ equation is a more complete labor supply equation (goods-leisure particular case)
- Change in time assignment (labor and leisure activities) can be predicted after changes in E_c and/or T_c

Conclusions

- Understanding utility as a **TCIUF** facilitates specification and interpretation
- Behind the TCIUF always is a system of activities and goods consumption equations
- Gross classification of activities:
 - a. Those one would like to increase but can not because of time budget (leisure);
 - b. Those one would like to decrease but can not because of technical constraints;
 - c. Work and others.
- For b-type activities, Value of reduction = value of doing something else + value of diminishing mandatory time assigned.
- Observed Time Use permits empirical estimations of these values of time using econometric models: transport (three decades), activities.
- Applications so far show that:
 - Value of work time can be positive or negative.
 - Value of leisure can be different from the wage rate.
 - Increasing available time can be more important than travel displeasure.
 - Better to use segments than include socio-demographic variables in U.

Motivation for further research

- Time assigned to work is a new Labor Supply model where the marginal utility of work can be different from zero.
- A priori classification of activities can be explored empirically and econometrically.
- Single period (cross-sectional) models may not account for potentially relevant time use related decisions (but...).
- Necessary link with sociology, psychology and biology to further analyze results.

Deconstructing utility in activity-travel choice models

Sergio R. Jara-Díaz Universidad de Chile