M^cCormick

Northwestern Engineering

Northwestern University Transportation Center

Developments in Integrated Modeling of Activity-Travel Demand and Dynamic Network Flows

Hani Mahmassani

EXECUTIVE SUMARY

- Existing static assignment tools inadequate for incorporating user responses (e.g. to dynamic prices, reliability) and activity models: require time-varying representation of flows in networks
- Simulation-based DTA methods provide appropriate platform for integrating advanced user travel-activity behavior models
- DTA tools used in practice still lack several key features
 - Limited to route choice as only user choice dimension
 - Do not capture user heterogeneity
 - Cannot generate travel time reliability measures as path LOS attributes
 - Do not produce distributional impacts of contemplated projects/ measures (social justice)
 - Limited applicability of dynamic equilibrium procedures to large-scale regional networks

EXECUTIVE SUMARY II

- Recent SHRP-2 projects (e.g. CO4, LO4) have developed the methodologies to integrate user response models in network simulation procedures, for application over the near, medium and long terms
- The algorithms solve for a multi-criterion dynamic stochastic user equilibrium with heterogeneous users in response to dynamic prices, and congestion-induced unreliability
- The integrated procedures are demonstrated on the New York regional network, using advanced demand models developed in Project SHRP-2 CO4 on the basis of actual data, coupled with the algorithmic procedures developed and adapted for large-scale network implementation.

	Behavioral
Activity-scheduling, real-time response to information	Realism Prospect theory, Cumulative PT
Activity-based models	Learning dynamics Bounded rationality, thresholds, heuristics,
Trip chains	Computational process models Attitudes, perceptions
Disaggregate, choice models	Random utility Consumer theory
4-ste Sequ	p
Statio	c Dynamics

State of Practice in Network Modeling

1. Most agencies use static assignment models, often lacking formal equilibration, with very limited behavioral sensitivity to congestion-related phenomena (incl. reliability)

2. Some agencies use traffic microsimulation models downstream from assignment model output, primarily for local impact assessment

3. Time-dependent (dynamic) assignment models continuing to break out of University research into actual application– market growing, still fragmented, with competing claims and absence of standards:

- existing static players adding dynamic simulation-based capabilities,
- existing traffic microsimulation tools adding assignment (route choice) capability, often in conjunction with meso-simulation
- standalone simulation-based DTA tools

State of Practice in Network Modeling (ctd.)

4. Applications to date complementary, not substitutes, for static assignment;
primary applications for operational planning purposes: work zones, evacuation,
ITS deployment, HOT lanes, network resilience, etc... Still not introduced in core
4-step process, nor integrated with activity-based models

5. Existing commercial software differs widely in capabilities, reliability and features; not well tested. So-called open source is illusion for practice – no QA, nor accountability.

- 6. Equilibration for dynamic models not well understood, and often not performed
- 6. Dominant features, first introduced by DYNASMART-P in mid 90's:
 - Micro-assignment of travelers; ability to apply disaggregate demand models

Meso-simulation for traffic flow propagation: move individual entities, but according to traffic flow relations among averages (macroscopic speed-density relations): faster execution, easier calibration

Ability to load trip chains (first tool with this capability, essential to integrate with activity-based models)

Responses to Pricing, in Existing Network Models

- 1. Route choice main dimension captured; replace travel time by travel cost in shortest path code, assuming constant VOT.
- 2. When multiple response classes recognized, discrete classes with specific coefficient values are used; number of classes can increase rapidly; not too common in practice.
- 3. Reliability is almost never considered.

DELIVERING THE METHODS: SIX KEY CHALLENGES

- ADVANCED BEHAVIOR MODELS
 CO4
- HETEROGENEOUS USERS C04, C10?
- INTEGRATION WITH NETWORK MODELS: THE PLATFORM- SIMULATION-BASED MICRO-ASSIGNMENT DTA C04, L04, C10
- GENERATE THE ATTRIBUTES: RELIABILITY IN NETWORK LEVEL OF SERVICE L04
- CONSISTENCY BETWEEN BEHAVIOR (DEMAND) AND PHYSICS (SUPPLY): EQUILIBRATION C04, C10?
- PRACTICAL LARGE NETWORK APPLICATION: INTELLIGENT IMPLEMENTATION C10?

User Heterogeneity

User Heterogeneity

- Trip-makers choose their paths based on many criteria, including travel time, travel reliability and out-of-pocket cost, and with heterogeneous perceptions.
- Empirical studies (e.g. Hensher, 2001; Cirillo et al. 2006) found that the VOT varies significantly across individuals.
- Lam and Small (2001) measured the value of reliability (VOR) of \$15.12 per hour for men and \$31.91 for women based on SP survey data.

Beyond Value of Time...

User Heterogeneity

- Present in valuation of key attributes, and risk attitudes
 - Value of schedule delay (early vs. late, relative to preferred arrival time), critical in departure time choice decisions.
 - Value of reliability.
 - Risk attitudes.
 - Causes significant challenge in integrating behavioral models in network simulation/assignment platforms

Estimation Results Route Choice Model NYC Area

			1		
Model				Lognormal [-1.00,1.00]	
Description	-	Congested Time, Cost, Toll Bias and Std. Dev.		Congested Time, Cost, Toll Bias and Std. Dev.	
Number of Observations	16	1694		1694	
Likelihood with Zero Coefficients	-1174	-1174.1913		-1174.1913	
Likelihood at Convergence	-1017	-1017.4036		-1015.6495	
Parameter	Coefficient	T-Statistic	Coefficient	T-Statistic	
Contant for Toll Route	-1.0155	-11.794	-1.0512	-14.041	
Highway Cost (Dist*16+Tolls, cents) by Occupancy	-0.0010	-2.058	-0.0010	-2.350	
Congested Time (minutes)	-0.0430	-5.569	-3.1732	-18.155	
Congested Time on Highways (minutes)					
Congested Time on Non-Highway Roads (minutes)					
Congested Time on Roads with v/c => 0.9 (minutes)					
Congested Time on Roads with v/c < 0.9 (minutes)					
Standard Deviation - Congested Time per Mile	-0.7344	-0.650	-0.7333	-1.312	
Error Term Parameters					
Varince log-Beta-Congested Time			1.0142	6.357	
Values of Time (\$/hr)					
Mean Based on Congested Time	25	25.80		28.92	
Standard Deviation Based on Congested Time	-			15.42	

Dealing with Heterogeneity in Existing Network Models

1. Ignore: route choice main dimension captured; replace travel time by travel cost in shortest path code, assuming constant VOT.

- 2. When multiple response classes recognized, discrete classes with specific coefficient values are used; number of classes can increase rapidly; not too common in practice.
- 2. Recent developments with simulation-based DTA:

Heterogeneous users with continuous coefficient values; made possible by

Breakthrough in parametric approach to bi-criterion shortest path calculation.

Include departure time and mode, in addition to route choice, in user responses, in stochastic equilibrium framework

Efficient implementation structures for large networks: Application of integrated model to New York Regional Network.

Selected Developments in Flow Simulation for Network Application

- Capturing user heterogeneity
- Convergence of micro and meso level models → particlebased models
- Incorporating sources of variability in both micro and meso levels
- Vehicle trajectories as unifying concept for output processing, measurement, and tying theoretical development to empirical validation
- Modeling flow breakdown: micro mechanisms, collective phenomenon

Integration Issues

Integration Issues

- As demand models reflect greater behavioral realism, supply side simulation models need to incorporate these improvements as well.
- Current travel choice models reflect the following:
 - Random heterogeneity and taste variations
 - Serial correlation among repeated choices
 - Non-IIA substitution pattern among alternatives; general error structures
 - Process models for activity choice and scheduling
- Incorporating these behavioral extensions into supply-side (network) models requires producing the attributes included in the estimated choice models
 → implications for core algorithms (e.g. path finding) and consistency-seeking (equilibrium) procedures.

DEMAND

SUPPLY

INTEGRATE?

DISINTEGRATING DEMAND AND SUPPLY

THE KEY IS THE PLATFORM: SIMULATION-BASED DTA

CRITICAL LINK 1: LOADING INDIVIDUAL ACTIVITY CHAINS

CRITICAL LINK 2: MODELING AND ASSIGNING HETEROGENEOUS USERS

CRITICAL LINK 3: Multi-scale modeling: consistency between temporal scales for different processes

Example: Mode choice and multi-criteria dynamic user equilibrium model

- Assumptions:
 - Given network with discretized planning horizon
 - Given time-dependent OD person demand
 - Given calibrated mode choice model (LOV, HOV, and Transit)
 - Given VOT distribution
 - Given road pricing scheme
- Solve for:
 - Modal share for each mode (e.g., LOV, HOV, and Transit)
 - Assignment of time-varying travelers for each mode (LOV, HOV) to a congested time-varying multimodal network under multi-criteria dynamic user equilibrium (MDUE) conditions
- Methodology:
 - Descent direction method for solving the modal choice problem
 - Simulation-based column generation solution framework for the MDUE problem

Modeling framework

Model implementation

- Short-term Integration
 - Mode choice loop integrated in model framework
 - MNL, GEV, and Mixed Logit (random coefficients) Mode Choice model
- Medium-term Integration
 - Departure time choice dimension; activity-based models
 - MNL, GEV, Mixed Logit (Random coefficients), and Mixed Logit (Serial Correlation) Choice Model
- Long-term Integration
 - Activity scheduling models, time use, process models

Solution Algorithm for MDUE– UE with random VOT and VOR

For short-term integration: incorporate MNL/GEV mode choice dimension and heterogeneous users for mode and route choices

Generalized Cost

Generalized cost is defined as a summation of travel monetary cost (TC), travel time (TT) and travel time variability/reliability (TV).

 VOT is considered as a continuous random variable distributed across the population of trip-makers with the density functions:

• VOR β is considered as a constant for all trip-makers

Parametric Analysis Method (PAM)

Numerical Results: Baltimore Network Application of MDUE Procedure with Heterogeneous Users

- 6,825 nodes
- 14,317 links
- 570 zones
- Dynamic toll on I-95
- 2-hour (7-9Am) morning peak time-varying OD demand with 898,878 vehicles

Convergence Pattern

Generate Reliability as Network LOS

Challenges in Characterizing Network Variability and Correlations

- Representation of the travel time variability through the network's links and nodes
 - Variability of link travel times
 - Variability of delays associated with movements through the intersections, particularly left-turns
- Strong correlation between travel times in different parts of the network
 - Adjacent links are more likely to experience high delays in the same general time period than unconnected links
 - Difficult to capture these correlation patterns when only link level measurements are available
 - Difficult to derive path-level and OD-level travel time distributions from the underlying link travel time distributions

Travel Reliability Measure

- Given a path set for each (i,j,τ) for a given possible VOT range by PAM, we re-evaluate the path generalized cost by adding a travel time reliability measure $TV_{i,i}^{\tau}$
- In current implementation, exploit relation between std dev per unit distance and mean time per unit distance at network level
- In future work, could estimate std dev per unit distance and mean time per unit distance for specific O-D's and paths from simulation results

Travel Time Reliability

Standard Deviation vs. Average Travel Time (per mile)

(Greater Washington, DC network: OD level variability)

Irvine Network

- Network
 - Freeways I-405, I-5, state
 highway 133
 - 326 nodes
 - 626 links
 - 61 TAZs
- Demand
 - Two hours morning peak (7-9AM)

Network Travel Time per Unit Distance and Standard Deviation (5 minute interval)

- Each data point represents the mean and standard deviation of travel times per mile for all vehicles departing in 5-minute interval.
- 24 data points for 2-hour demand

Network Travel Time per Distance and Standard Deviation (1 minute interval)

- Each data point represents the mean and standard deviation of travel times per mile for all vehicles departing in 1-minute interval.
- 120 data points for 2-hour demand

Network Travel Time per Distance with Sampling Vehicles

- Each data point represents the mean and standard deviation of travel times per mile for all vehicles departing in 5-minute interval.
- 24 data points for 2-hour demand

Vehicle Trajectories: Unifying Framework for Micro and Meso Simulation

- Vehicle trajectory contains the traffic information and itinerary associated with each vehicle in the transportation network, including
 - a set of nodes (describing the path)
 - the travel time on each link along the path
 - the stop time at each node
 - the cumulative travel/stop time
 - possibly lane information

**** Output file for vehicles trajectories ****								
This file provides all the vehicles trajectories								
Veh # 16	645 Tac	= 2 Ori	igZ= 🧏	5 DestZ=	= 9C]	Lass= 5	UstmN=	103
DownN= 102 DestN= 11 STime= 70.20 Total Travel Time=								
8.49 # of Nodes= 18 VehType 1 LOO 1								
102					97	89	4	3
24								
5	27	28	32	35	39	40	11	
==>Node Exit Time Point								
0.80	0.90	1.60	2.20	3.00	3.40	3.80	5.00	5.50
5.90								
6.00	6.30	6.70	7.10	7.30	7.60	8.20	8.40	
==>Link Travel Time								
0.80	0.10	0.70	0.60	0.80	0.40	0.40	1.20	0.50
0.40								
0.10	0.30	0.40	0.40	0.20	0.30	0.60	0.20	
==>Accumulated Stop Time								
0.60	0.60	1.20	1.36	1.42	1.44	1.47	2.22	2.57
2.57								
2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.57	

Obtain Vehicle Trajectories from Simulation Models

- Vehicle trajectories could be obtained from all particle-based simulations, regardless of whether the physics underlying vehicle propagation and interactions are captured through microscopic maneuvers or through analytic forms
 - Microscopic simulation models move traffic by capturing individual driver maneuvers such as car following, overtaking, lane changing and gap acceptance decisions.
 - Mesoscopic simulation models move vehicles as individual particles, albeit according to (macroscopic) relations among average traffic stream descriptors (e.g. speed-density relations).
- The realm between micro and meso has narrowed considerably over time—and will continue to do so.
- Trajectories could also be obtained from direct measurement in actual networks: video camera, cell-phone/GPS probes, etc...
- This enables consistent theoretical development in connection with empirical validation (for L04)

Application of Integrated Procedures to New York Regional Network

Apply demand and user response models developed In SHRP-2 Project CO4 (w. P. Vovsha, PB Inc.) for NY Metro network:

- route choice model includes time-varying prices, and travel reliability measure
- random value of time (distributed across users)
- mode choice and departure time choice models

in conjunction with

MDUE (multi-criteria Dynamic User Equilibrium and

heterogeneous users to very large scale network

~30,000 Nodes 95,000 Links 3,700 Zones 6-hour AM peak period 5.2 M simulated vehicles

CONCLUDING COMMENTS

- We have seen advances in state-of-art in integrating user responses to dynamic pricing, congestion and unreliability in network modeling procedures.
- New methodologies are software independent and can be applied with any simulation-based DTA tool (caveats...)
- Application to very large New York regional network first successful application to network of this size of equilibrium DTA with heterogeneous users.
- Integration process could be improved with additional choice dimensions, and eventually fully-configured activity-based model.

KEY ISSUES and OPPORTUNITIES

• Theoretical constructs:

- Notions of consistency in stochastic dynamic context
 - → convergence measures?
- Path dependence in dynamic simulation forecasts
- Consistency of attribute valuation throughout activity submodels— e.g. should travel time be valued similarly in route vs mode vs departure time choices?
- Methodological issues: multi-scale modeling, path finding, activity scheduling combinatorics, cooperation and competition in multi-agent system
- Application issues: Planning and Operations Decision Support System
 - Different applications/problems call for different capabilities: plug-and-play built on basic platform
- Major opportunity: more active tie in with trajectory data from probes and sensor information— responsive, calibrated, relevant platform for decision support

Integrated activity-based demand & network microsimulation Process models of cognition and learning in networks

Demand forecasting for planning decisions

- Transportation planning has lacked a forecasting paradigm that recognizes the complex nature of the system and the limitations of available tools
- Behavioral models more for deriving insights and understanding behavior than to serve as crystal ball
- Greater uncertainty in the input (future technology, economy, spatial patterns, lifestyles) than in the tripmaking behavior of users *given* these inputs

Towards new forecasting paradigm...

Integrated activity-based demand & network microsimulation

Process models of cognition and learning in networks