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EXECUTIVE SUMARY

• Existing static assignment tools inadequate for incorporating 
user responses (e.g. to dynamic prices, reliability) and activity 
models: require time-varying representation of flows in 
networks

• Simulation-based DTA methods provide appropriate platform 
for integrating advanced user travel-activity behavior models

• DTA tools used in practice still lack several key features
– Limited to route choice as only user choice dimension

– Do not capture user heterogeneity

– Cannot generate travel time reliability measures as path LOS attributes

– Do not produce distributional impacts of contemplated projects/ measures 
(social justice) 

– Limited applicability of dynamic equilibrium procedures to large-scale regional 
networks
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EXECUTIVE SUMARY II

• Recent SHRP-2 projects (e.g. C04, L04) have developed the 
methodologies to integrate user response models in network 
simulation procedures, for application over the near, medium 
and long terms

• The algorithms solve for a multi-criterion dynamic stochastic 
user equilibrium with heterogeneous users in response to 
dynamic prices, and congestion-induced unreliability

• The integrated procedures are demonstrated on the New York 
regional network, using advanced demand models developed 
in Project SHRP-2 C04 on the basis of actual data, coupled 
with the algorithmic procedures developed and adapted for 
large-scale network implementation.   
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1.  Most agencies use static assignment models, often lacking formal 

equilibration, with very limited behavioral sensitivity to congestion-related 

phenomena (incl. reliability)

2.  Some agencies use traffic microsimulation models downstream from 

assignment  model output, primarily for local impact assessment

3. Time-dependent (dynamic) assignment models continuing to break out of 

University research into actual application– market growing, still fragmented, with 

competing claims and absence of standards:

 existing static players adding dynamic simulation-based capabilities,

 existing traffic microsimulation tools adding assignment (route choice) capability,       
often in conjunction with meso-simulation

 standalone simulation-based DTA tools

State of Practice in Network Modeling



4.  Applications to date complementary, not substitutes, for static assignment; 

primary applications for operational planning purposes:  work zones, evacuation, 

ITS deployment, HOT lanes, network resilience, etc…   Still not introduced in core 

4-step process, nor integrated with activity-based models

5.  Existing commercial software differs widely in capabilities, reliability and 

features; not well tested.  So-called open source is illusion for practice – no QA, 

nor accountability.

6. Equilibration for dynamic models not well understood, and often not performed

6. Dominant features, first introduced by DYNASMART-P in mid 90’s:

 Micro-assignment of travelers; ability to apply disaggregate demand models

 Meso-simulation for traffic flow propagation:  move individual entities, but according to 

traffic flow relations among averages (macroscopic speed-density relations):  faster 

execution, easier calibration

 Ability to load trip chains (first tool with this capability, essential to integrate with 

activity-based models)

State of Practice in Network Modeling (ctd.)



1. Route choice main dimension captured; replace travel time by travel cost in 

shortest path code, assuming constant VOT.

2. When multiple response classes recognized, discrete classes with specific 

coefficient values are used; number of classes can increase rapidly; not too 

common in practice. 

3. Reliability is almost never considered.

Responses to Pricing, in Existing Network Models



DELIVERING THE METHODS:  
SIX KEY CHALLENGES

• ADVANCED BEHAVIOR MODELS  C04
• HETEROGENEOUS USERS C04, C10?  
• INTEGRATION WITH NETWORK MODELS: 

THE PLATFORM– SIMULATION-BASED MICRO-
ASSIGNMENT DTA C04, L04, C10

• GENERATE THE ATTRIBUTES:  RELIABILITY IN 
NETWORK LEVEL OF SERVICE L04

• CONSISTENCY BETWEEN BEHAVIOR (DEMAND) AND 
PHYSICS (SUPPLY):  EQUILIBRATION C04, C10?

• PRACTICAL LARGE NETWORK APPLICATION: 
INTELLIGENT IMPLEMENTATION C10?
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User Heterogeneity
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• Trip-makers choose their paths based on many criteria, including travel time, 
travel reliability and out-of-pocket cost, and with heterogeneous perceptions.

• Empirical studies (e.g. Hensher, 2001; Cirillo et al. 2006) found that the VOT 
varies significantly across individuals.

• Lam and Small (2001) measured the value of reliability (VOR) of $15.12 per 
hour for men and $31.91 for women based on SP survey data.

Home

Path A: 25 minutes + $2

Path B: 35 minutes + $0

Office

High 
VOT

Low 
VOT

User Heterogeneity

15



User Heterogeneity
• Present in valuation of key attributes, and risk attitudes

– Value of schedule delay (early vs. late, relative to 
preferred arrival time), critical in departure time 
choice decisions.

– Value of reliability.

– Risk attitudes.

Causes significant challenge in integrating behavioral 
models in network simulation/assignment platforms

Beyond Value of Time…



Estimation Results Route Choice 
Model NYC Area
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Model Lognormal [-1.00,1.00]

Description
Congested Time, Cost, Toll Bias 

and Std. Dev.
Congested Time, Cost, Toll Bias 

and Std. Dev.

Number of Observations 1694 1694

Likelihood with Zero Coefficients -1174.1913 -1174.1913

Likelihood at Convergence -1017.4036 -1015.6495

Parameter Coefficient T-Statistic Coefficient T-Statistic

Contant for Toll Route -1.0155 -11.794 -1.0512 -14.041

Highway Cost (Dist*16+Tolls, cents) by Occupancy -0.0010 -2.058 -0.0010 -2.350

Congested Time (minutes) -0.0430 -5.569 -3.1732 -18.155

Congested Time on Highways (minutes) --- --- --- ---

Congested Time on Non-Highway Roads (minutes) --- --- --- ---

Congested Time on Roads with v/c => 0.9 (minutes) --- --- --- ---

Congested Time on Roads with v/c < 0.9 (minutes) --- --- --- ---

Standard Deviation - Congested Time per Mile -0.7344 -0.650 -0.7333 -1.312

Error Term Parameters

Varince log-Beta-Congested Time --- --- 1.0142 6.357

Values of Time ($/hr)

Mean Based on Congested Time 25.80 28.92

Standard Deviation Based on Congested Time --- 15.42



1.  Ignore:  route choice main dimension captured; replace travel time by travel 
cost in shortest path code, assuming constant VOT.

2. When multiple response classes recognized, discrete classes with specific 
coefficient values are used; number of classes can increase rapidly; not too 
common in practice.

2. Recent developments with simulation-based DTA:

Heterogeneous users with continuous coefficient values; made possible by 

Breakthrough in parametric approach to bi-criterion shortest path calculation.

Include departure time and mode, in addition to route choice, in user responses, 
in stochastic equilibrium framework

Efficient implementation structures for large networks:  Application of integrated 
model to New York Regional Network.

Dealing with Heterogeneity in Existing Network Models



Selected Developments in Flow Simulation for 
Network Application

• Capturing user heterogeneity

• Convergence of micro and meso level models  particle-
based models

• Incorporating sources of variability in both micro and meso
levels

• Vehicle trajectories as unifying concept for output processing, 
measurement, and tying theoretical development to 
empirical validation

• Modeling flow breakdown:  micro mechanisms, collective 
phenomenon



Integration Issues
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Integration Issues

• As demand models reflect greater behavioral realism, supply side simulation 
models need to incorporate these improvements as well.

• Current travel choice models reflect the following:
– Random heterogeneity and taste variations
– Serial correlation among repeated choices
– Non-IIA substitution pattern among alternatives; general error structures
– Process models for activity choice and scheduling

• Incorporating these behavioral extensions into supply-side (network) models 
requires producing the attributes included in the estimated choice models 
implications for core algorithms (e.g. path finding) and consistency-
seeking (equilibrium) procedures.
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THE KEY IS THE PLATFORM:

SIMULATION-BASED DTA

DISINTEGRATING DEMAND AND SUPPLY

CRITICAL LINK 1: 

LOADING INDIVIDUAL 

ACTIVITY CHAINS

CRITICAL LINK 2:

MODELING AND ASSIGNING

HETEROGENEOUS USERS 

CRITICAL LINK 3:

Multi-scale modeling:  

consistency between temporal 

scales for different processes



• Assumptions:
– Given network with discretized planning horizon
– Given time-dependent OD person demand
– Given calibrated mode choice model (LOV, HOV, and Transit)
– Given VOT distribution
– Given road pricing scheme

• Solve for:
– Modal share for each mode (e.g., LOV, HOV, and Transit)
– Assignment of time-varying travelers for each mode (LOV, HOV) to a 

congested time-varying multimodal network under multi-criteria 
dynamic user equilibrium (MDUE) conditions

• Methodology:
– Descent direction method for solving the modal choice problem
– Simulation-based column generation solution framework for the 

MDUE problem

Example:  Mode choice and multi-criteria 
dynamic user equilibrium model
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Model implementation

• Short-term Integration
– Mode choice loop integrated in model framework
– MNL, GEV, and Mixed Logit (random coefficients) 

Mode Choice model

• Medium-term Integration
– Departure time choice dimension; activity-based 

models
– MNL, GEV, Mixed Logit (Random coefficients), and 

Mixed Logit (Serial Correlation) Choice Model

• Long-term Integration
- Activity scheduling models, time use, process models



Solution Algorithm for MDUE–
UE with random VOT and VOR

For short-term integration: incorporate 
MNL/GEV mode choice dimension and 

heterogeneous users for mode and 
route choices 



Generalized Cost

• Generalized cost is defined as a summation of travel monetary 
cost (TC), travel time (TT) and travel time variability/reliability 
(TV).

• VOT  is considered as a continuous random variable 
distributed across the population of trip-makers with the 
density functions:

• VOR     is considered as a constant for all trip-makers
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Parametric Analysis Method (PAM)
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Parametric Analysis Method (PAM)
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Parametric Analysis Method (PAM)
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Parametric Analysis Method (PAM)
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Parametric Analysis Method (PAM)
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Numerical Results: Baltimore Network

• 6,825 nodes
• 14,317 links
• 570 zones
• Dynamic toll on 

I-95
• 2-hour (7-9Am) 

morning peak 
time-varying 
OD demand 
with 898,878 
vehicles

Application of MDUE Procedure with Heterogeneous Users

DYNASMART-P



Convergence Pattern
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Generate Reliability as Network LOS
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Challenges in Characterizing Network 
Variability and Correlations

• Representation of the travel time variability through the 
network’s links and nodes 
– Variability of  link travel times 
– Variability of delays associated with movements through the 

intersections, particularly left-turns

• Strong correlation between travel times in different parts of 
the network
– Adjacent links are more likely to experience high delays in the 

same general time period than unconnected links
– Difficult to capture these correlation patterns when only link 

level measurements are available
– Difficult to derive path-level and OD-level travel time 

distributions from the underlying link travel time distributions
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Travel Reliability Measure

• Given a path set for each (i,j,) for a given possible VOT 
range by PAM, we re-evaluate the path generalized 
cost by adding a travel time reliability measure



TVi, j


• In current implementation, exploit relation 
between std dev per unit distance and mean time 
per unit distance at network level

• In future work, could estimate std dev per unit 
distance and mean time per unit distance for 
specific O-D’s and paths from simulation results



Travel Time Reliability
Standard Deviation vs. Average Travel Time (per mile)

(Greater Washington, DC network: OD level variability)
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• Network
– Freeways I-405, I-5, state 

highway 133

– 326 nodes

– 626 links

– 61 TAZs

• Demand
– Two hours morning peak 

(7-9AM)

44

Irvine Network



• Each data point represents the mean and standard 
deviation of travel times per mile for all vehicles 
departing in 5-minute interval.

• 24 data points for 2-hour demand

Network Travel Time per Unit Distance and 
Standard Deviation (5 minute interval)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 1.2 1.4 1.6 1.8 2

St
an

d
ar

d
 D

ev
ia

ti
o

n

Network Travel Time per Distance (minute/mile)

45



• Each data point represents the mean and standard 
deviation of travel times per mile for all vehicles 
departing in 1-minute interval.

• 120 data points for 2-hour demand

Network Travel Time per Distance and 
Standard Deviation (1 minute interval)
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• Each data point represents the mean and standard 
deviation of travel times per mile for all vehicles 
departing in 5-minute interval.

• 24 data points for 2-hour demand

Network Travel Time per Distance with
Sampling Vehicles
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Vehicle Trajectories: Unifying Framework 
for Micro and Meso Simulation

• Vehicle trajectory contains the traffic information and 
itinerary associated with each vehicle in the transportation 
network, including

48

– a set of nodes (describing 
the path)

– the travel time on each 
link along the path

– the stop time at each node

– the cumulative travel/stop 
time

– possibly lane information



Obtain Vehicle  Trajectories from 
Simulation Models

• Vehicle trajectories could be obtained from all particle-based 
simulations, regardless of whether the physics underlying vehicle 
propagation and interactions are captured through microscopic 
maneuvers or through analytic forms
• Microscopic simulation models move traffic by capturing individual 

driver maneuvers such as car following, overtaking, lane changing and 
gap acceptance decisions.

• Mesoscopic simulation models move vehicles as individual particles, 
albeit according to (macroscopic) relations among average traffic 
stream descriptors (e.g. speed-density relations).

• The realm between micro and meso has narrowed considerably 
over time—and will continue to do so.

• Trajectories could also be obtained from direct measurement in 
actual networks: video camera, cell-phone/GPS probes, etc…

• This enables consistent theoretical development in connection with 
empirical validation (for L04)
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Application of Integrated Procedures to 
New York Regional Network

Apply demand and user response models developed 
In SHRP-2 Project C04 (w. P. Vovsha, PB Inc.) for NY Metro network:

- route choice model includes time-varying prices, and travel reliability measure

- random value of time (distributed across users)
- mode choice and departure time choice models  

in conjunction with 
MDUE (multi-criteria Dynamic User Equilibrium and 
heterogeneous users to very large scale network

~30,000  Nodes
95,000  Links

3,700  Zones

6-hour AM peak period
5.2 M simulated vehicles



User Heterogeneity

Beyond Value of Time…



CONCLUDING COMMENTS

• We have seen advances in state-of-art in integrating user 
responses to dynamic pricing, congestion and unreliability in 
network modeling procedures.

• New methodologies are software independent and can be 
applied with any simulation-based DTA tool (caveats…)

• Application to very large New York regional network first 
successful application to network of this size of equilibrium 
DTA with heterogeneous users.

• Integration process could be improved with additional choice 
dimensions, and eventually fully-configured activity-based 
model.
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KEY ISSUES and OPPORTUNITIES

• Theoretical constructs:  

– Notions of consistency in stochastic dynamic context

 convergence measures?

– Path dependence in dynamic simulation forecasts

– Consistency of attribute valuation throughout activity submodels– e.g. should 
travel time be valued similarly in route vs mode vs departure time choices? 

• Methodological issues: multi-scale modeling, path finding, activity 
scheduling combinatorics, cooperation and competition in multi-agent 
system

• Application issues: Planning and Operations Decision Support System

– Different applications/problems call for different capabilities:  plug-and-play 
built on basic platform 

• Major opportunity:  more active tie in with trajectory data from probes 
and sensor information– responsive, calibrated, relevant platform for 
decision support 
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Demand forecasting 

for planning decisions

• Transportation planning has lacked a forecasting 
paradigm that recognizes the complex nature of the 
system and the limitations of available tools

• Behavioral models more for deriving insights and 
understanding behavior than to serve as crystal ball

• Greater uncertainty in the input (future technology, 
economy, spatial patterns, lifestyles) than in the 
tripmaking behavior of users given these inputs

Integrated 
activity-based 
demand & 
network 
microsimulation

Process models of 
cognition 
and learning in 
networks



Towards new forecasting 

paradigm...

Integrated 
activity-based 
demand & 
network 
microsimulation

Process models 
of cognition 
and learning in 
networks


