Issues and Challenges
Integrating Activity-Based Demand Models with Dynamic Traffic Assignment Procedures

David B. Roden
AECOM
Next Generation Travel Models

- Interaction of network operations and performance with changes in behavior that affect activity patterns, travel schedules, and mode and location choice
 - Finer resolution of space and time dimensions
 - Traveler decisions in the context of household activities
 - Operations of specific streets and facilities
 - Regional simulation of individual vehicles and persons to evaluate system performance
Ultimate Objective

- Fully integrated dynamic travel choice and network performance tool
 - Models both supply and demand in a consistent and compatible way (i.e., similar level of detail)
 - Disaggregate – all model components track the location of each individual throughout the day
 - Detailed positions (e.g., link-lane-offset)
 - Detailed time steps (e.g., minutes or seconds)
Case Studies

- **TRANSIMS activity model simulation for Portland**
 - Survey-based (activity-patterns, schedules, and modes)
 - Activity locations (~6/link) and seconds of the day
- **DaySim activity model and TRANSIMS routing**
 - Sacramento and Jacksonville
 - Parcel-based with 4 to 22 time periods (30+ minutes)
- **Columbus tour model (PB) and TRANSIMS simulation**
 - Zone-based, 4 to 18 time periods (60+ minutes)
 - Up to two intermediate stops on tours and sub-tours
Issues and Challenges

- TRANSIMS ActGen
 - Household survey activity patterns copied ~130 times
 - MUST be internally consistent and accurate
 - 45% of ActGen problems caused by coding or reporting inaccuracies in the household survey
 - Simple (standard) location choice models failed to consider schedule constraints and destination capacity
 - Schedule shifts / compression could not “fix” complex tours
 - Time reporting bias overloaded the Microsimulator
 - Random time shift needed (+/- 15 minutes)
Before Temporal Smoothing

Survey
TRANSIMS

15-Minute Percentage of Daily Trips

Time of Day
After Temporal Smoothing

![Graph showing 15-Minute Percentage of Daily Trips over Time of Day for Survey and TRANSIMS data.](chart.png)
Location Choice Constraints

- Time budget constraints select destinations that are logically consistent with the activity pattern/schedule.
Travel Time Refinements

- Zone-to-zone travel times by time period and mode
 - Need accurate intra-zonal “skim” data (especially walk)
 - Time budgets need travel time range for zone selection
 - Scheduling needs refined location-to-location times
 - Relative location of activities to zone centroids

Travel Time Range

Activity Schedule Estimate
Time Disaggregation

- Activity schedule times
 - DaySim – 22 time periods (30+ minutes)
 - MORPC – 18 time periods (60+ minutes)
- Diurnal distributions within each period – random?
 - Need to coordinate/restrict times within each time period given other trips/tours and travel times
- MORPC complications
 - Subtours defined separately – need trip/tour sorting
 - Intermediate stop and subtour durations are undefined
Spatial Allocation

- MORPC – zones, ActGen – links, DaySim – parcels
 - Disaggregate zones and aggregate parcels
- Match activity locations between tours and travelers
 - Synchronize household members and shared activities
 - Home, work and school locations for joint tours and subtours
- MORPC complication
 - Household vehicles are not assigned or coordinated
 - Shared rides are not explicit
 - Driver / passenger role is undefined
 - Household shared rides may not generate a vehicle trip
Subzone Allocation Weights

- Use Block/Block Group data to allocation zone trip ends to activity locations.

Centroid Proximity Weights

Zone, Block and Network Inconsistencies
Network Resolution

- MPO (>=collector) vs. all-streets vs. in-between detail
 - All work reasonably well for drive trips
 - More detail slows processing time and increases illogical paths (too many local cut-throughs)
 - Less detail overloads collectors and minor arterials
 - Walk and transit trips have problems with MPO detail
 - Not ubiquitous in space or time
 - Schedules / stops / access paths / transfer coordination
 - Paths highly dependent on start and return times
 - Full tour must be feasible using the chosen mode
 - Trip time shifts to “optimize” transit path are important
Intermediate Level of Detail

- Use MPO zone connectors as local streets
 - Options: prohibit cut throughs, add activity locations
 - Check connections at signalized intersections
Point-to-Point Options

- Fully enumerated skims by space and time – too much
- On-the-fly-path building methods
 - One-to-many or many-to-one path building possible if the one-end time of day is fixed or period binned
 - DaySim wants the time fixed at the many-end
 - Sampling or probe methods
- Hybrid multi-step/feedback methods
 - Adjust the level of detail to the sub-model needs
 - Multi-level networks with multiple path builds or skims
 - Probe/search → select/choose → refine/re-do
Conclusions

- Most activity models do not schedule activities at the level of detail needed for tour simulation
 - Start times, activity durations, and travel times need to be flexible but realistic
 - Rules/methods for resolving conflicts are important
- Feeding travel times to activity models at the level of detail needed for accurate scheduling is challenging
 - On-the-fly, multi-level methods show promise
 - Integrates path building into activity generation/location
 - Critical for transit tours and mode choice