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An Innovative Forecasting Procedure for the MDCEV Model 
 

1. INTRODUCTION 
Multiple discrete-continuous (MDC) choice situations are being increasingly recognized and 
modeled in the recent travel modeling literature. Example applications include, but are not 
limited to, individual activity participation and time-use studies (Bhat, 2005; Habib and Miller, 
2009), household vehicle ownership and usage forecasting (Ahn et al., 2007; Bhat et al., 2008), 
and household travel expenditure analyses (Rajagopalan and Srinivasan, 2008). Further, a variety 
of modeling approaches have been used to analyze MDC choices. Among the available 
approaches, the recently developed multiple discrete-continuous extreme value (MDCEV) model 
structure has gained particular attention. Specifically, due to its closed form probability 
expressions and other elegant properties (Bhat, 2008), the MDCEV model has been used in 
several of the above-identified and other empirical applications.  

Despite several empirical applications, a simple and practically feasible forecasting 
procedure has not yet been developed for the MDCEV model system. This has severely limited 
the applicability of the MDCEV model for practical travel forecasting and policy analysis 
purposes. Hence, a brief discussion is provided below to highlight the nature of the MDCEV 
forecasting problem and to outline the objective of this paper. 

The MDCEV model is based on a resource allocation formulation. Specifically, it is assumed 
that consumers operate with a finite amount of available resources, such as time or money. The 
decision-making mechanism is assumed to be driven by an allocation of the limited amount of 
resources to consume various goods/alternatives in such a way as to maximize the utility of 
consumption. Further, a stochastic utility framework is used to recognize the analyst’s lack of 
awareness of all factors affecting consumer decisions. In addition, a non-linear utility function is 
employed to incorporate important features of consumer choice making, including: (1) the 
diminishing nature of marginal utility with increasing consumption, and (2) the possibility of 
consuming multiple goods/alternatives as opposed to a single good/alternative. To summarize, 
the MDCEV model is based on a stochastic, constrained, non-linear utility optimization 
formulation. Specifically, the model estimation is based on the stochastic Kuhn-Tucker (KT) first 
order conditions for the optimization problem identified above. An assumption that stochasticity 
is type-I extreme value distributed leads to closed form consumption probability expressions and 
facilitates a straightforward maximum likelihood estimation of the model (Bhat, 2008). 

Given the estimated model parameters and a budget amount for each individual, any 
forecasting exercise involves solving the stochastic, constrained, non-linear utility maximization 
problem for optimal consumption quantities. Unfortunately, there is no straight-forward 
analytical solution to this problem; a combination of simulation (to mimic stochasticity) and 
optimization (to solve the constrained non-linear optimization problem) methods needs to be 
employed. The analyst must carry out constrained non-linear optimization to obtain the 
consumption forecasts at each simulated value of stochasticity (or unobserved heterogeneity). 
Such conditional (on unobserved heterogeneity) consumption forecasts evaluated over the entire 
(simulated)distribution of unobserved heterogeneity are used to derive the distributions of 
unconditional consumption forecasts. 

To solve the conditional constrained non-linear optimization problem, the forecasting 
procedures used in the literature so far use either enumerative or iterative optimization methods, 
which are saddled with large computation times and potential convergence issues (for iterative 
procedures). Hence, the objective of this paper is to develop an efficient, non-iterative 
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forecasting algorithm for the MDCEV model. The algorithm builds on simple, yet insightful, 
analytical explorations that shed new light on the properties of the MDCEV model. For specific 
forms of utility functions, the algorithm becomes non-iterative and significantly reduces 
computational time. Preliminary application results, as discussed Section 3, indicate a significant 
computational efficiency of the proposed algorithm. For example, to forecast the expenditures of 
4000 households in 7 transportation-related expenditure alternatives, for 500 sets of error term 
draws for each household, the proposed algorithm takes less than 2 minutes. On the other hand, 
the iterative forecasting routine would take around 2 days to do so. 

Next section discusses the structure and some new properties of the MDCEV model. Section 
3 presents the new forecasting algorithm and application results. Section 4 concludes the paper. 
 
2 THE MDCEV MODEL: STRUCTURE AND PROPERTIES 
2.1 Model Structure (drawn from Bhat, 2008) 
Consider the following additively separable utility function as in Bhat (2008): 
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In the above expression, U(t) is the total utility accrued from consuming t (a Kx1 vector with 
non-negative consumption quantities kt ; k = 1,2,…,K) amount of the K alternatives available to 
the decision maker. The kψ  terms (k = 1,2,…,K), called as baseline utility parameters, represent 
the marginal utility for alternative k at the point of zero consumption for that alternative. 
Through the kψ  terms, the impact of observed and unobserved alternative attributes, decision-
maker attributes, and the choice environment attributes may be introduced as 

exp( )k k kzψ β ε′= + , where kz  contains the observed attributes and kε  captures the unobserved 
factors. The kα  terms (k = 1,2,…,K), labeled as satiation parameters (0 1)kα< ≤ , capture 
satiation effects by reducing the marginal utility accrued from each unit of additional 
consumption of alternative k. The kγ  terms (k = 2,3,…,K), labeled as translation parameters, play 
a similar role of satiation as that of kα  terms, and an additional role of translating the 
indifference curves associated with the utility function to allow corner solutions. Note that there 
is no kγ  term for the first alternative for it is assumed to be an essential Hicksian composite good 
(or outside good) that is always consumed (hence no need for corner solution). Finally, the 
consumption-based utility function in (1) can be expressed in terms of expenditures ( ke ) and 
prices ( kp ) as: 
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From the analyst’s perspective, consumers maximize the random utility given by Equation (2) 
subject to a linear budget constraint and non-negativity constraints on kt : 
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The optimal consumptions (or expenditure allocations) can be found by forming the Lagrangian 
and applying the Kuhn-Tucker (KT) conditions. The Lagrangian function for the problem is: 
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where λ  is the Lagrangian multiplier associated with the budget constraint. The KT first-order 
conditions for the optimal expenditure allocations *( ; 1, 2,..., )ke k K= are: 
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Next, using these same stochastic KT conditions, we derive a few properties of the MDCEV 
model that can be exploited to develop a highly efficient forecasting algorithm. 
 
2.2 Model Properties 

Property 1: The price-normalized baseline utility of a chosen good is always greater than that of 
a good that is not chosen. 
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Now, consider two alternatives ‘i’ and ‘j’, of which ‘i’ is chosen and ‘j’ is not chosen by a 
consumer. For that consumer, the above KT conditions for alternatives ‘i’ and ‘j’ can be written 
as: 
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As one can observe, the third term in the above inequality is nothing but i

ip
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transitive property of inequality of real numbers, the above inequality implies a fundamental 

property of the MDCEV model that ji
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utility of a chosen good is always greater than that of a good that is not chosen.  
 
Corollary 1.1: It naturally follows from the above property that when all the K alternatives 
available to a consumer are arranged in the descending order of their price-normalized baseline 
utility values (with the outside good being first in the order), and if it is known that the number of 
chosen alternatives is M, then the first M alternatives in this arrangement are the chosen 
alternatives. 
 
Property 2: When all the satiation parameters ( )kα are equal, and if the corner solutions are 
known (i.e., if the chosen and not-chosen alternatives are known), the optimal consumptions of 
the chosen goods can be expressed in an analytical form. 
Proof: Using the first and second KT conditions in (6), and assuming without loss of generality 
that the first M goods are chosen, one can express the optimal consumptions as: 
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Using these expressions, the budget constraint in (3) can be written as: 
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From the above equation, and assuming that all satiation ( )kα  parameters as equal to α , the 
Lagrange multiplierλ can be expressed analytically as: 
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The above expression for λ  can be substituted back into the expressions in (11) to obtain the 
following analytical expressions for optimal consumptions: 
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3 AN EFFICIENT FORECASTING ALGORITHM 
In this section, using the properties identified in the preceding section, we develop an efficient, 
non-iterative forecasting algorithm for the MDCEV model with the following utility functional 
form: 
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3.1 Outline of the Forecasting Algorithm 
Step 0: Assume that only the outside good is chosen and let the number of chosen goods M = 1. 
Step 1: Given the input data ( kz , kp ), model parameters (β , kγ ,α ) and the simulated error term 

( kε ) draws, compute the price-normalized baseline utility values ( )exp( )k k kz pβ ε′ + for 
all alternatives. Arrange all the K alternatives available to the consumer in the descending 
order of their price-normalized baseline utility values (with the outside good in the first 
place). Go to step 2. 

Step 2: Compute the value of λ  using equation (12). Go to step 3. 
Step 3: If (λ  > the price-normalized baseline utility of the alternative in position M+1)  

Compute the optimal consumptions of the first M alternatives in the above 
descending order using equations in (13) and (14). Set the consumptions of other 
alternatives as zero and stop. 

Else, go to step 4. 
Step 4: M = M+1.  

If (M = K)  
Compute the optimal consumptions using equations in (13) and (14) and stop. 

Else, go to step 2. 
 
The above-outlined algorithm can be applied a large number of times with different simulated 
values of the kε  terms to sufficiently cover the simulated distribution of unobserved 
heterogeneity and obtain the distributions of the consumption forecasts.  
 
3.2 Intuitive Interpretation of the Algorithm 
The proposed algorithm builds on the insight from corollary 1.1 that if the number of chosen 
alternatives is known, one can easily identify the chosen alternatives by arranging the price-
normalized baseline utility values in a descending order. Subsequently, one can compute the 
optimal consumptions of the chosen alternatives using Equations (13) and (14). The only issue, 
however, is that the number of chosen alternatives is unknown apriori. To find this out, the 
algorithm begins with an assumption that only one alternative (i.e., the outside good) is chosen 
and verifies this assumption by verifying the KT conditions (i.e., the condition in Step 3) for 
other alternatives. If the KT conditions are met, the algorithm stops. Else, at least the next 
alternative (in the order of the price-normalized baseline utilities) has to be among the chosen 
alternatives. Thus, the KT conditions (i.e., the condition in step 3) are verified again by assuming 
that the next alternative is among the chosen alternatives. These basic steps are repeated until 
either the KT conditions (i.e., the condition in step 3) are met or the assumed number of chosen 
alternatives reaches the maximum number (K). 

The algorithm involves enumeration of the choice baskets in the most efficient fashion. In 
fact, the algorithm begins with identifying a single alternative (outside good) that may be chosen. 
If the KT conditions are not met for this choice basket, the algorithm identifies a two-alternative 
choice basket and so on, till the number of chosen alternatives is determined. Thus, the number 
of times the algorithm enumerates choice baskets is equal to the number of chosen alternatives in 
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the optimal consumption portfolio, which is at most equal to (but many times less than) the total 
number of available alternatives (K). 
 Another feature of the algorithm is that it is non-iterative in nature, which makes it highly 
efficient compared to other, iterative approaches. Further, coding the algorithm using vector and 
matrix notation in matrix programming languages significantly reduces the computational burden 
even with large number of choice alternatives and observations.  

In summary, the proposed algorithm is simple and efficient. The only disadvantage of 
this algorithm (in its current form) is it is designed to be used with the -profileγ  utility 
specification (i.e., all kα  parameters are constrained to be equal). However, as indicated in Bhat 
(2008), both kγ  and kα  parameters serve the role of allowing differential satiation effects across 
the choice alternatives. Due to such overlapping roles, “for a given kψ  value, it is possible to 
closely approximate a sub-utility function based on a combination of kγ  and kα  values with a 
sub-utility function solely based on kγ  or kα  values” (Bhat, 2008). Hence, and given the ease of 
forecasting with the proposed algorithm, we suggest an estimation of the -profileγ utility 
function. Nevertheless, the insights obtained from the properties discussed in the paper can be 
used to design an efficient (albeit iterative) algorithm for cases when kα  parameters vary across 
alternatives. 
 
3.3 Application Results 
Limited experiments were conducted to assess the performance of the algorithm. Specifically, 
the performance of the proposed algorithm and that of a traditionally used iterative optimization 
routine were compared. Empirical data on household transportation expenditures, obtained from 
the 2002 Consumer Expenditure Survey conducted by the Bureau of Labor Statistics, was used 
for the experiments. This data was used to estimate an MDCEV model for household 
expenditures in six transportation categories (or alternatives), including: (1) Vehicle purchases, 
(2) Gasoline and motor oil, (3) Vehicle insurance, (4) Vehicle maintenance, (5) Air travel, and 
(6) Public transportation, and a seventh, outside category that includes all other expenditures of a 
household. An MDCEV model with these seven expenditure alternatives was estimated using 
data from 4000 households. These model parameters and the data of the 4000 households were 
used for subsequent experiments. 

The proposed algorithm was coded and executed in Gauss matrix programming language. 
In addition, for comparison purposes, the iterative constrained optimization routines of the 
Constrained Maximum Likelihood (CML) module of Gauss were also used for forecasting the 
household expenditures in the empirical data. The CML module uses a sequential programming 
method for non-linear optimization, in which the optimal consumption values are approximated 
iteratively using the first and second gradients of the Lagrangian function. To recognize 
stochasticity, both the forecasting procedures were run repeatedly using several sets of Halton 
draws of the kε  terms. 
 To forecast the expenditure patterns of 4000 households in the seven expenditure 
alternatives identified above, the proposed algorithm takes less than 2 minutes with 500 sets of 
error terms draws for each household. On the other hand, the optimization routine in the (CML) 
module of Gauss takes at least 6 minutes to compute the expenditure patterns of the same 4000 
households for just one set of error term draws for each household. A linear extrapolation to 500 
sets of error term draws implies a rather large computation time of more than 2 days. These run 
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time differences (2 minutes versus 2 days) clearly highlight the efficiency of the proposed 
algorithm. Even in empirical contexts with a large number of alternatives, observations, or error 
term draws, the computation time of the proposed algorithm will not increase in a linear fashion. 
This is because, since most of the algorithm can be executed using matrix operations, the 
computations are performed simultaneously for all observations and over all error term draws. 
This contributes to the significant computational efficiency of the proposed algorithm. On the 
other hand, the iterative forecasting procedure does not exhibit such computational efficiencies. 
In addition to being computationally efficient, in certain (although a small number of) instances, 
the iterative procedure ran into convergence problems, and either yielded suboptimal solutions or 
did not even converge. On the other hand, the proposed algorithm did not run into any 
convergence issues thanks to its non-iterative nature. 
 
4 SUMMARY AND CONCLUSIONS 
This paper proposes a simple and efficient forecasting algorithm for the MDCEV model. The 
algorithm builds on simple, yet insightful, analytical explorations with the Kuhn-Tucker 
conditions of optimality that shed new light on the properties of the model. For specific, but 
reasonably general, forms of utility functions, the algorithm circumvents the need to carry out 
any iterative optimization-based forecasting procedures that have hitherto been used. The non-
iterative nature of the algorithm contributes significantly to its computational efficiency. 

As the proposed algorithm makes it easier to perform forecasting and policy analysis with 
MDCEV, it is hoped that these types of models will soon be utilized for practical travel 
forecasting and policy analysis purposes. In subsequent work, the proposed algorithm will be 
applied to use an MDCEV model of activity time-use for activity time-use forecasting (using 
data from the San Francisco Bay Area) and the results will be presented at this conference. 
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