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Multiple Discrete-Continuous Choices

 Several consumer choice situations are characterized by:

 Discrete components: “what goods/alternatives to choose”

 Continuous components: “how much to consume” 

 Multiple Discreteness: choice of multiple alternatives that are imperfect 
substitutes to one another

 Examples:

 Activity participation and time-use (Bhat 2005; Habib and Miller 2009)

 Household vehicle type holdings and usage (Ahn et al. 2008; Bhat et al., 2009)

 Household energy consumption (Energy type & usage choices; Pinjari and Bhat, 2010)

 Household water consumption

 Household expenditures (Ferdous et al., 2010)

 Grocery purchases (Brand choice and purchase quantity; Kim et al., 2002)



Modeling Methods

 Multivariate Discrete-Continuous frameworks

 Not based on utility maximization framework for multiple discreteness

 Fundamental consumer behaviors (e.g., satiation effects) are not captured

 Utility maximization-based approaches

 Direct utility-based Kuhn-Tucker (KT) Demand Systems

 Hanemann (1979), Wales and Woodland (1983), Kim et al. (2002), Phaneuf et 

al. (2000), von Haefen et al. (2004), Bhat (2005, 2008)

 Indirect utility-based dual approaches

 Lee and Pitt (1986), Phanuef (1999)



Kuhn-Tucker (KT) Demand Systems

 Earlier KT demand systems 

 Hanemann (1979) and Wales and Woodland (1983), but not many applications.

 Recent KT demand systems

 Kim et al. (2002)

 von Haefen et al. (2004), von Haefen and Phaneuf (2005), and others

 Bhat (2005, 2008)  The MDCEV Model

 The basic MDCEV framework is being extended in several directions

 MDCNEV (Pinjari and Bhat, 2010)…Nested extreme value error structures 

 MDCGEV (Pinjari, 2010)…GEV error structures 

 GMDCEV (Bhat and Pinjari, 2010)…complementarity among choice alternatives

 Increasing number of KT demand model applications in the recent 

past



Gaps in Research

 Despite the many developments and empirical applications, 

forecasting and policy analysis with the MDCEV model and other KT 

demand systems has been very difficult

 Currently available forecasting procedures are computationally 

expensive and potentially inaccurate

 This has severely limited the applicability of these model systems for 

practical forecasting and policy analysis



Objectives of this Research

 To develop a simple, efficient, and practically feasible forecasting 

procedure for the MDCEV Model

 Generalize the forecasting procedure to other KT demand model 

systems

 Specifically, we develop a forecasting algorithm that builds on simple, 

yet insightful explorations with the Kuhn-Tucker conditions of optimal 

utility that shed new light on the properties of the MDCEV model 



The MDCEV Framework

 MDCEV and other KT demand systems are based on:

Resource allocation formulation

 Consumers allocate a limited amount of resources (e.g., time, money) to 

consume goods/alternatives to maximize the utility of their consumption

Random utility maximization (RUM)

 A stochastic utility framework is used to recognize analyst’s lack of 

awareness of all factors affecting consumer decisions

Non-linear utility framework

 To accommodate satiation and variety seeking (i.e., multiple discreteness)

A stochastic, constrained, non-linear utility optimization formulation
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The MDCEV Model

Consumers are assumed to maximize the following utility function:

: vector of consumption quantities 

: baseline (marginal)utility

: allows diminishing marginal utility (hence multiple discreteness)

: allows corner solutions (i.e., some goods may not be chosen)

: alternative attributes and consumer characteristics

: stochastic (or error) term for kth good 
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 Lagrangian for constrained, non-linear utility maximization: 

* 0kt

* 0kt

if

if

 These stochastic KT conditions can be used to derive consumption probabilities

 Type-1 extreme value error terms  closed-form consumption probabilities 
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 Kuhn-Tucker (KT) conditions:



Forecasting with the MDCEV Model

 Forecasting with the MDCEV model involves solving the stochastic, 

constrained, non-linear utility maximization problem

 Unfortunately, there is no analytical solution to the problem

 A combination of simulation and optimization methods is required

 The analyst must carryout constrained non-linear optimization at each 

simulated value of unobserved heterogeneity (i.e., error terms) to 

obtain the corresponding conditional forecasts

 The conditional consumption forecasts evaluated over the entire 

simulated distribution of unobserved heterogeneity can be used to 

derive the distributions of consumption forecasts



 Current methods to obtain conditional forecasts

Enumerative optimization: Enumerate all possible choice baskets. 

Bruteforce method; computationally burdensome even with a modest number 

of choice alternatives.

Gradients-based iterative optimization: Begin with an initial solution for the 

consumption values, and update the solution using gradients of the utility 

function until a desired level of accuracy is reached.

 Iterative  computationally intensive

 Potential convergence (and accuracy) issues

von-Haefen et al. (2004) method (Numerical Bisection): 

Builds on the insight that knowing the consumption value of one alternative 

leads to all other consumption values. Much efficient than generic gradients-

based optimization algorithms, but still iterative in nature.

 Need an efficient non-iterative optimization procedure



Properties of the MDCEV Model

 Property (1): The baseline marginal utility of a chosen alternative is 

always greater than that of a not-chosen alternative

 It naturally follows from this property that:

 when all the alternatives available to a consumer are arranged in the 

descending order of their baseline marginal utility values, 

 and if it is known that the number of chosen alternatives is M, 

 then one can easily identify the chosen alternatives as the first M

alternatives in the arrangement.

 if alt ' '  is chosen and alt ' '  is not choseni j i j

If the number of chosen alternatives is M, then the upper bound 

and lower bound for     are        and         , respectively.M 1M



 Property (2): 

If the chosen alternatives are known (say M alternatives are chosen), 

and when all the satiation parameters (i.e.,      parameters) are equal, 

the Lagrange multiplier (   ) as well as the optimal consumptions can 

be expressed in an analytical form. 

k



 Analytical expression for the Lagrange multiplier    when alphas        

are equal across all alternatives:

 Closed-from consumption expressions when all alphas         are equal:
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 The only catch is that the number of chosen alternatives is unknown 

apriori. 

 Thus, we build an algorithm that:

 Begins with an assumption that only one alternative is chosen

 Verifies if the KT conditions are met

 If the KT conditions are not met, the number of chosen alternatives is 

increased by one and the KT conditions are verified again

 These steps are repeated until the KT conditions are met



An Efficient Forecasting Algorithm

Step 0: Assume that only one alternative is chosen (M = 1)

Step 1: Arrange all the K alternatives available to the consumer in the descending        

order of their baseline marginal utility (     ) values

Step 2: Compute the value of  Lagrange multiplier    using Equation 1

Step 3: 

If >           (i.e., if the KT conditions are satisfied)

 Compute optimal consumptions of the first M alternatives using Equations 

2 & 3

 Set the optimal consumptions of the remaining K-M alternatives as zero

Else: go to step 4

Step 4: M = M+1 (update the no. of chosen alternatives)

If M = K: Compute optimal consumptions using Equations 2 & 3

Else: Go to step 2

k
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Features of the Algorithm

 Enumerates choice baskets in the most efficient fashion

 The number of times the algorithm enumerates choice baskets is equal to 

the number of chosen alternatives

 Non-iterative

 Can be easily generalized for other KT demand systems (see paper)

 The only disadvantage is that the algorithm is designed for utility 

functions with equal alpha parameters across all alternatives

 We have recently overcome this problem as well, albeit with an iterative 

algorithm (see paper)



Preliminary Experiments

 An MDCEV Model was estimated and applied to an empirical context 

of household transportation expenditures in the following 7 alternative 

categories:

 Vehicle Purchases

 Gasoline and Motor Oil

 Vehicle Insurance

 Vehicle Maintenance

 Air Travel

 Public Transportation

 All other expenditures and savings (numeraire outside good)

 Data 

 Obtained from the Consumer Expenditure Survey conducted by the U.S. 

Bureau of Labor Statistics (BLS) (see Ferdous et al., 2010)

 Expenditures data from 4000 households

 Household income considered as the budget constraint



Proposed Algorithm

 Takes less than 2 minutes

 No convergence-related problems, 

thanks to its non-iterative nature. 

More accurate than the iterative 

procedure

CML module in GAUSS

 Would take 2 days

 Possible convergence issues leading 

to inaccurate forecasts

To forecast the expenditure patterns 

of 4000 households 

in 7 alternative categories, 

with 500 sets of error term draws for each household:

In another application (Eluru et al. 2010) with:

62 choice alternatives, 

2000 individual observations, and 

100 sets of error term draws for each household, 

the algorithm took about 10 minutes. 



Conclusion

 Forecasting with MDCEV and other KT demand systems has been 

very difficult due to analytical and computational complexities

 This paper proposes a forecasting algorithm that is:

 Simple and intuitive

 Highly efficient

 Non-iterative

 More accurate compared to current iterative algorithms

 The algorithm can be easily generalized for other KT demand systems

 The algorithm can be used not only for forecasting, but also to 

generate datasets for conducting experiments with the MDCEV model

 This algorithm enables the use of MDCEV frameworks for practical 

forecasting and policy analysis



Thank you

?



A third application: Residential Energy Consumptions

 Households’ choice (and consumption amount) of different types of 
energy

 Choice alternatives: 

 Electricity

 Natural Gas

 Fuel Oil

 LPG

 All other household expenditures and savings clubbed into a numeraire good

 Budget: Annual household income

 Data: 

 2005 Residential Energy Consumption Survey (RECS)

 4382 Household records

 Model estimated using data from 2473 households

 Forecasting was performed on all 4382 households



# households

# Error draws

1000 2000 3000 4000 4382

100 2.5 5.1 7.4 10.2 10.6

200 4.8 9.6 14.8 19.6 20.8

300 7.1 14.3 21.2 28.7 30.9

400 9.5 18.8 28.3 37.1 41.9

500 11.8 23.5 35.4 46.9 51.6

Forecasting computation-times (seconds) with the proposed algorithm

The proposed algorithm takes 10.64 seconds to predict the energy 

consumption patterns of 4382 households, with 100 sets of error 

term draws for each household.

The gradients-based iterative forecasting procedure would take 15 

days to do the same. 



Predicted Observed

Average 

annual

household 

expenditure

($)

Average 

annual

Household 

consumption

(Million BTU)

Average 

annual

household 

expenditure

($)

Average 

annual

household 

consumption

(Million BTU)

Outside good 45766 45805

Electricity 1100 38 1116 39

Natural Gas 548 50 487 44

Fuel Oil 157 11 149 10

LPG 84 4 98 5



450o Fahrenheit Increase in Annual Cooling Degree 

Days  

Predicted changes in U.S. 

residential energy expenditures 

(Billion $)

Predicted changes in 

energy consumption 

(Trillion BTU)

Average (Standard error) Average (Standard error)

Outside good -5.281  (0.454)

Electricity 5.581  (0.478) 189.78  (16.31)

Natural Gas -0.169  (0.016) -15.72  (  1.44)

Fuel Oil -0.074  (0.010) -5.03  (  0.70)

LPG -0.057  (0.009) -2.70  (  0.41)

Predicted Changes in U.S. Residential Energy Expenditures due to Climate 

Change


