Choice Set Generation and Model Identification for Route Choice using GPS-Data from Smart Phones

Dipl.-Ing. Eileen Mandir

University of Stuttgart Institute for Road and Transport Science Department for Transport Planning and Traffic Engineering

email: eileen.mandir@isv.uni-stuttgart.de • phone: +49 711 685-82477

Can traveler's smart phones be used to

- provide a platform for long term recording of GPS data
- determine the size of choice sets in route choice
- help to identify suitable choice models

and which problems need to be addressed to exploit this data source?

- Data Collection
- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

Data Collection

- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

- 278 participants
- > 20 miles commute each day

activepilot U

- 8 week period
- Onboard smart phone
- Data transfer to server via GSM mobile phone network

Logging GPS data online with downloadable smart phone applications:

- Benefits:
 - no labor intensive recruiting or instruction needed
 - no investment in survey hardware needed

Data Characteristics

Logging GPS data online with downloadable smart phone applications:

- Benefits:
 - no labor intensive recruiting or instruction needed
 - no investment in survey hardware needed
- Drawbacks:
 - data loss possible
 - data more difficult to interpret

Data Characteristics

Logging GPS data online with downloadable smart phone applications:

- Benefits:
 - no labor intensive recruiting or instruction needed
 - no investment in survey hardware needed
- Drawbacks:
 - data loss possible
 - data more difficult to interpret
- Several trips included in one track
- Inaccurate logging at trip ends

Data Volume

Data Volume				
	Total over 278 participants	Per person		
Total time of detection	12,044 hours	43,3 hours		
Number of detected trajectories	20,000	71		

- Data Collection
- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

- Gaps in track due to loss of GSM network connection or unrecorded trips:
 - jump in time stamp of subsequent data points
 - jump in position of subsequent data points
 - \rightarrow Data loss or unrecorded trip?

- Gaps in track due to loss of GSM network connection or unrecorded trips:
 - jump in time stamp of subsequent data points
 - jump in position of subsequent data points
 - \rightarrow Data loss or unrecorded trip?
- Data points with speed equal to zero due to loss of GPS signal or stop of vehicle
 - \rightarrow Congestion or activity?

- Gaps in track due to loss of GSM network connection or unrecorded trips:
 - jump in time stamp of subsequent data points
 - jump in position of subsequent data points
 - \rightarrow Data loss or unrecorded trip?
- Data points with speed equal to zero due to loss of GPS signal or stop of vehicle
 - → Congestion or activity?
- Procedure needed to
 - connect gap with shortest path
 - or identify trip end

Identification of Trip Ends

Data Volume				
	Total over 278 participants	Per person		
Total number of GPS trajectories	20,000	71		
Number of identified trips	25,000	89		

- Origin and destination points needed for choice set generation
 - Position match
 - Time match
 - Point of Interest match

Identification Activity Location

Data Volume				
	Total over 278 participants	Per person		
Total number of trips	25,000	89		
Number of trips between identified activity locations	17,500	63		

- Data Collection
- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

Chosen Routes from home to work

Level of Service experienced

Direct Distance [km]

Routes from home to work				
	Total over 278 participants	Per person		
Number of chosen routes (GPS)	610	2.2		
Number of known routes (interview)	806	2.9		

- Equilibrium assignments usually find >30 routes per OD pair for similar size networks
- Choice set generation needs to reflect hierarchical structure of decision process

- Data Collection
- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

Classical Discrete Choice Models

C-Logit by Cascetta

$$P_{r} = \frac{f^{C} \cdot \exp\left(-\beta \cdot G_{r}\right)}{\sum_{r'} f^{C} \cdot \exp\left(-\beta \cdot G_{r'}\right)}$$

- β Parameter
- $f^{\mathcal{C}}$ Cascetta coefficient
- G Generalized cost
- P Probability
 - Route

Y

Modified Logit

Modified Logit with low elasticity for small deviations by Gobiet

$$P_{r} = \frac{f^{C} \cdot \exp\left(-\beta \cdot G_{r}\right)}{\sum_{r} f^{C} \cdot \exp\left(-\beta \cdot G_{r}\right)}$$

- β Parameter
- $f^{\mathcal{C}}$ Cascetta coefficient
- G Generalized cost
- P Probability
 - Route

r

- Data Collection
- Data Processing
- Choice Set Generation
- Model Identification
- Conclusions

Conclusions

- Push for developing applications for smart phone GPS tracking
- Profound revealed preference data which can be fused with traffic state and traffic information data for detailed estimation
- Data valuable for providing empirical foundation for choice set generation and model identification
- Data valuable for calibration of equilibrium assignment models on chosen routes

Authors:

- Juliane Pillat, University of Stuttgart
- Eileen Mandir, University of Stuttgart
- Markus Friedrich, University of Stuttgart
- Christian Schiller, German Aerospace Center (DLR)