Allocating Disaggregated Freight Analysis Framework Truck-Rail Data

presented to

The 3rd Innovations in Travel Modeling Conference

presented by Roshan Kumar, University of Texas at Austin Krishnan Viswanathan, Cambridge Systematics, Inc.

Co-authors

Daniel Beagan, Cambridge Systematics, Inc. Vidya Mysore, Florida DOT S. Travis Waller, University of Texas at Austin

May 12, 2010

THE UNIVERSITY OF TEXAS AT AUSTIN

Presentation Outline

- Motivations
- Disaggregation Methodology
- Allocation Methodology
- Summary and Future Work

2

THE UNIVERSITY OF TEXAS AT AUSTIN

Why Disaggregate FAF2 Data

Freight capacity expansion not keeping up with demand

Rail as an attractive mode

- » Helps mitigate congestion
- » Reduces Greenhouse gas emissions
- » Price competitive
- The Freight Analysis Framework Version 2 (FAF2) valuable data source
- Serves two audiences
 - » MPO and DOT Planners
 - » MPO and DOT Modelers

3

Florida FAF2 Data

	2002				2035							
Mode	Within	State	From	State	To S	state	Within	State	From	n State	To	State
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%
Truck	487	85	50	68	85	42	928	88	67	72	300	56
Rail	60	11	17	23	37	18	56	5	14	15	113	21
Water (Domestic only)	<0.1	<1	1	<1	37	18	<0.1	<1	0	<1	18	3
Air, air & truck (Domestic only)	<0.1	<1	0	<1	0	<1	<0.1	<1	0	<1	1	<1
Truck & rail	<0.1	<1	0	<1	1	<1	0	<1	0	<1	3	<1
Other intermodal	0	<1	1	1	5	3	1	<1	1	1	17	3
Pipeline & unknown	27	5	5	7	36	18	64	6	10	10	85	16
Total	575	100	74	100	202	100	1049	100	94	100	538	100

THE UNIVERSITY OF TEXAS AT AUSTIN

CAMBRIDGE

The Methodology

- Develop relationships between commodity and employment and population data
 - » Rationale is commodities end up in zones that produce or consume them
- Use relationships to develop factors for each commodity for freight flow disaggregation
- Apply share of county tonnage or value to FAF² regional tonnage or value to obtain disaggregated FAF² O-D database

Development of 3 Digit NAICS Employment

- County Business Patterns (CBP) data
- 3 digit most complete at MSA level
- PUMS data used for allocation
- Census 2000 stratification used for government and self employed workers

Development of Production and Attraction Equations

- Regression used to establish relationships between commodities and employment
- Number of observations is 114 (domestic FAF2 regions)
- Data from 3 digit NAICS county data aggregated to FAF regions
- Data from USDA National Agricultural Statistical Services used for farm and livestock related commodities
- Data from USDOE National Energy Technology Lab used for coal consumption

8

Development of Production and Attraction Equations

Input-Output data used to determine initial commodity employment relationship

- Multiple revisions done to equations before settling on a final form
- Some of relationships have either low R² values or the tstats are very poor
 - » Kept it because we felt that those employment categories reflected the true nature of the commodity production or attraction

Inclusion of Import Data

- FAF2 includes domestic travel portion of international shipments
- Regressions are used only for the domestic end of the international shipments
- Critical to understand the flows from/to the Port of Entry/Exit (POE)
- Allocate each POE share by mode in each FAF region using data from BTS, US Army Corp of Engineers, and STAT-USA
- Add the POE commodity by tons and value to the disaggregated county commodity tonnage & value

Estimate the annual tonnage of commodity produced P_c(i) or attracted A_c(j) for each County

- Aggregate the county productions P_c(i) and attractions A_c(j) to their associated FAF² regions to create P_{FAF2}(i) and A_{FAF2}(j)
- Expand the FAF² Regions matrix, FAF²(k,l), to counties matrix, County (i,j)

If origin *i* and destination *j* are in Florida then County(i,j)=[FAF²(k,I)*P_c(i)/P_{FAF2}(i)* A_c(j)/ A_{FAF2}(j)]

- If origin *i* is in Florida and destination *I*, is outside Florida then County(i,I)=[FAF²(k,I)*P_c(i)/P_{FAF2}(i)]
- If origin k is outside Florida and destination j is in Florida then County(k,j)=[FAF²(k,l)*A_c(j)/A_{FAF2}(j)]

Paper or Paperboard Articles (SCTG 28)

Production Equation

» 0.101 (10.78) x Paper Manufacturing (NAICS 322) + 0.038 (4.82) x Printing or related activities (NAICS 323) ; $R^2 = 0.81$

Attraction Equation

» 0.006 (2.49) x Food Manufacturing (NAICS 311) + 0.033 (5.10) x Paper Manufacturing (NAICS 322) + 0.048 (6.97) x Printing or related activities (NAICS 323) + 0.00009 (4.77) x Population2000 ; $R^2 = 0.93$

			Paper 2002 (thousands oftons)
Origin	Destination	County	FAF Zone
Disaggregation of Flori			
FAF2 Miami (20)	FAF2 Jacksonville (19)	#NA	16.57
Miami Dade County	Baker County	0.00	#NA
Miami Dade County	Clay County	0.12	#NA
Miami Dade County	Duval County	7.89	#NA
Miami Dade County	Nassau County	3.54	#NA
Miami Dade County	St. Johns County	0.07	#NA
Palm Beach County	Baker County	0.00	#NA
Palm Beach County	Clay County	0.01	#NA
Palm Beach County	Duval County	0.44	#NA
Paim Beach County	Nassau County	0.20	#NA
Palm Beach County	St. Johns County	0.00	#NA
Broward County	Baker County	0.00	#NA
Broward County	Clay County	0.04	#NA
Broward County	Duval County	2.71	#NA
Broward County	Nassau County	1.22	#NA
Broward County	St. Johns County	0.03	#NA
Diaggregation of Florid	a origins to other US destir	nations	
FAF2 Miami (20)	GA Rem (25)	#NA	6.64
Miami Dade County	GA Rem	0.27	#NA
Palm Beach County	GA Rem	4.74	#NA
Broward County	GA Rem	1.63	#NA
Diaggregation of other	US origins to Florida Desti	nations	
GA Rem (25)	FAF2 Miami (20)	#NA	199.63
GA Rem	Miami Dade County	113.05	#NA
GA Rem	Paim Beach County	26.11	#NA
GA Rem	Broward County	60.47	#NA

Disaggregation Issues

Methodology presented thus far works for truck mode
» Truck network is ubiquitous

- Methodology needs to be enhanced to account for rail and truck-rail modes since intermodal centers are not in every county
- This calls for a new allocation methodology of truck-rail flows

Assignment of Truck-Rail Flows on Links (Issues)

- Assignment should use both truck and rail links
- Assignment of flows from O to D will not ensure this
- Example:

Assignment of Truck-Rail Flows on Links (Issues)

Removal of links such that rail link gets loaded suitably is not feasible

Have to remove links marked M and not . How to choose correct cut ? Very time consuming (exponential)

THE UNIVERSITY OF TEXAS AT AUSTIN

Assignment of Truck-Rail Flows on Links

Given a suitable assignment technique

Transform O-D matrix as follows:

- » Split O-D flow. From origin to rail access center. From rail egress center to destination
- » Given O-D, convert to $O \rightarrow R_1$ and $R_2 \rightarrow D$

Step 0: Transform O-D Matrix; perform assignment

Step 1: Perform equilibrium assignment using modified trip table

THE UNIVERSITY OF TEXAS AT AUSTIN

- Step 2: Find all paths connecting Origin to rail access; and paths connecting rail egress to Destination
 - » This step is usually unnecessary as all paths are tracked during assignment procedure
- Else, one can use a modified shortest path algorithm to find all shortest paths
 Not a fast technique. Not recommended
- Step 3: Store all the paths and set flow on the path equal to flow of the link on the path that constricts the flow

Steps 2 and 3 for first O-D pair:

LI	LIST		
<u>Path</u>	<u>Flow</u>		
1	200		
II	100		
III	100		
IV	200		
V	100		
VI	100		

THE UNIVERSITY OF TEXAS AT AUSTIN

Step 4: Flow Decomposition Algorithm. For the first O-D pair

II - A - B- V

III - A - B- VI

LIST			
<u>Path</u>	<u>Flow</u>		
Ι	200		
II	100		
III	100		
IV	200		
V	100		
VI	100		

Step5: Repeat for all O-D pairs

THE UNIVERSITY OF TEXAS AT AUSTIN

100

100

Summary and Future Work

The methodology allows us to determine which O-D pairs are practical and which are not for disaggregation

- » Prevents inclusion of O-D pairs that should not be included
- » Helps reduce model run times
- » For every link we get disaggregated O-D flows
- Apply methodology to Florida FAF2 database
- Develop validation methods
 - » ODME to understand truck portion of movements

Allocating Disaggregated Freight Analysis Framework Truck-Rail Data

presented to

The 3rd Innovations in Travel Modeling Conference

presented by Roshan Kumar, University of Texas at Austin Krishnan Viswanathan, Cambridge Systematics, Inc.

Co-authors

Daniel Beagan, Cambridge Systematics, Inc. Vidya Mysore, Florida DOT S. Travis Waller, University of Texas at Austin

May 12, 2010

THE UNIVERSITY OF TEXAS AT AUSTIN

