How Truck and Rail Compete in Commodity Movement in the U.S.?

Amir Samimi, Kouros Mohammadian, Kazuya Kawamura

University of Illinois at Chicago

The 3rd International Conference on Innovations in Travel Modeling of the Transportation Research Board

Tempe, Arizona, May 10-12, 2010

Background

INTRODUCTION

- A direct comparison of shipment costs was the primary method (Cunningham, 1982).
- Reliability, flexibility, safety, and some other noncost factors entered the analysis when the random utility models emerged (Norojono and Young, 2003)
- Hensher and Figliozzi (2007) argued that new supply chain concepts are adopted by many companies, which subsequently influenced the shipping preferences and required fundamental revision in the models.

Objectives

INTRODUCTION

- To introduce a large-scale behavioral freight modeling framework with a focus on modal split.
- To utilize publicly available freight data in the U.S. for the framework.
- To conduct a survey and satisfy the data needs.
- To introduce a behavioral freight mode choice model.
- To run a microsimulation freight model for the U.S.

Technical challenges

INTRODUCTION

- Rapid changes in the supply chain management strategies,
- Lack of an acceptable freight modeling framework,
- Freight data scarcity.

FRAMEWORK

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A

FAME FREIGHT ACTIVITY MICROSIMULATION ESTIMATOR

Illinois at Chicago

Firm Generation

The University of

Supply Chain Replication

Illinois at Chicago

Logistics Planning

Network Analysis

DATA NEEDS

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A Four types of data are required for FAME:

- Information on Business Establishments,
- Aggregate Freight Movements,
- Information on Individual Shipments,
- Specifications of the Transportation Networks.

UIC SURVEY

- A person with comprehensive knowledge of the firm's supply chain and transportation activities was asked for this online survey.
- Around 9.3% of those clicked on the survey link.
- 316 establishments participated in the survey providing information on 881 shipments across the country.
- PART I: Establishment Information.
- PART II: Shipment Information.
- PART III: Contact Information.

Biasness

INTRODUCTION FRAMEWORK DATA NEEDS **THE SURVEY** MODELS SIMULATION CONCLUSION Q/A

Value and weight share of each mode:

Mada	Dollar Value		Weight		Shipments	
Mode	CFS	UIC	CFS	UIC	UIC	
Truck	68%	67%	60%	49%	69%	
Rail	3%	4%	10%	12%	5%	
Water	1%	8%	4%	8%	5%	
Air, air & truck	5%	9%	0%	1%	11%	
Intermodal	15%	12%	7%	30%	11%	
Pipeline & unknown	9%	-	20%	-	-	

MODELS

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY **MODELS** SIMULATION CONCLUSION Q/A

Models that are used in FAME:

- Supplier selection,
- Shipment size,
- Mode Choice.

Supplier Selection

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY **MODELS** SIMULATION CONCLUSION Q/A

A Bi-Level Supplier Selection Model:

- List all the candidate suppliers,
 - ✓ FAF industry to commodity crosswalk,
 - Make and use tables in the 2002 Benchmark Input-Output Account.
- Suitability assessment?
 - ✓ A fuzzy rule-based system.

Shipment Size

- Distribution of the size of the shipments by commodity type and by shipping distance was obtained from the CFS 2002,
- 9 categories for distance: 50 miles, 50-99, 100-249, 250-499, 500-749, 750-999, 1000-1499, 1500-2000, >2000.
- 3 categories for size: <1000 lbs., 10000-50000, 50000<.</p>
- 43 categories for commodity: 2Digit-SCTG

Shipment Size

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY **MODELS** SIMULATION CONCLUSION Q/A Initialization:

For a given commodity and distance, define the following matrix:

Small AverageLargeTotal \vdots \cdots $\begin{bmatrix} \sqrt{1} \\ \sqrt{1} \\ \sqrt{1} \end{bmatrix}$ supplier i to buyer j \vdots x^{A}_{ij} \vdots \vdots \cdots $\begin{bmatrix} \sqrt{1} \\ \sqrt{1} \\ \sqrt{1} \end{bmatrix}$ Total $\begin{bmatrix} \sqrt{1} & \sqrt{1} & \sqrt{1} \end{bmatrix}$

Initialize in a way that larger supplier and buyers tend to ship their commodity in larger shipments.

Shipment Size

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY **MODELS** SIMULATION CONCLUSION Q/A

Iterative Proportional Fitting (IPF),

- Determining factors in shipment size:
 - ✓ Establishment size of the supplier,
 - ✓ Establishment size of the buyer,
 - ✓ Shipping distance,
 - ✓ Commodity type.

Mode Choice

Support of	Variable	riable Definition		Standard deviation
CONCERCIÓN OF	MODE	1: truck / 0: rail or any combination of that with truck	0.924843	0.263919
	GCD	Great circle distance (miles)	616.563	640.328
Contraction of the second	WEIGHT	IGHT Weight of the shipment (lbs)		28959
	IMPEDANCE	CE = EXP (H_IMP/R_IMP)		3.33839
	H_IMP	Highway impedance	897.702	4589.48
No.	R_IMP	Rail impedance	1176.16	9082.08
Eller a	CONTAINERIZED	ONTAINERIZED 1: if the shipment is containerized / 0: otherwise		0.149947
	COMMODITY	NODITY 1: if the commodity is agricultural, chemical, pharmaceutical, gravel, natural sands, cement, machinery, metal, mixed freight, miscellaneous, or prepared foodstuffs / 0: otherwise.		0.475691

Mode Choice

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY **MODELS** SIMULATION CONCLUSION Q/A

	Item	Value	t-ratio	VIF					
COETTICIENT	CONSTANT	4.832713742	8.170	-					
	GCD	1042385818E-02	-4.856	2.0786606					
	WEIGHT	2543805528E-04	-5.075	1.0296476					
	IMPEDANCE	9889771944E-01	-1.978	2.0211493					
	CONTAINERIZED	-1.271052643	-2.612	1.0550726					
	COMMODITY	9403044651	-2.985	1.0463709					
	Log likelihood	-58.56742	-	-					
	Model Chi-squared	138.4382	-	-					
	Akaike I.C.	0.26959	-	-					
	Pseudo R-squared	0.54168	-	-					
	Correctly Predicted (%)	95.615866	-	-					
	Correctly Predicted (%) – rail	58.33333	-	-					

19

SIMULATION

- A total of 46,243 firm-types were generated,
- In all the domestic FAF zones,
- Based on County Business Patterns (CBP) 2002,
- For each firm-type:
 - ✓ Location (FAF),
 - ✓ Industry (NAICS),
 - ✓ Size (8 clusters),
 - ✓ Number of actual firms

SIMULATION

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A

Modal Split Validation:

21

CONCLUSION

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A

Research Contribution:

- FAME is heavily based on public freight data in the U.S. and therefore data collection costs are substantially low.
- It is one of the early efforts in freight demand modeling that has a separate component for supply chain configuration.
- It has an open structure and could accept other components that may be available later.

CONCLUSION

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A **Research Contribution:**

Almost all the industry classes are covered in FAME.
FAME has a unique geographic coverage and to the best of the author's knowledge, it is the first comprehensive nationwide freight microsimulation in the U.S.

CONCLUSION

INTRODUCTION FRAMEWORK DATA NEEDS THE SURVEY MODELS SIMULATION CONCLUSION Q/A **Future Works:**

- Obtain more information on supplier selection preferences, and expand the second module,
- Develop a robust model to estimate the probability of a shipment being containerized,
- Consider international shipments as well,
- Implement econometrics models or logistic cost minimization approaches for shipment size,
- Network analysis.

UIC The University of Illinois at Chicago

Q/A

