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Introduction 

Current sensor technologies allow one to identify particular vehicles in a subnetwork and re-identify them 

later in the subnetwork. These technologies include license plate readers, electronic toll tags, blue tooth 

signatures, etc.  When time stamps are included in the data, one obtains travel times for each vehicle on 

the route segments traversed by the vehicles. These travel times can be used to study the performance of 

the network, including predictability of travel times for traveller information systems. However there are 

complexities in the use of this data for travel time estimations due to (1) correlations, (2) unreliability of 

sensors and (3) uncertainty of the underlying scenario. This paper attempts to explain these complexities 

and develops a Bayesian model for using such data, where the travel times are updated from prior 

estimates to new estimates in real time.  

Given the framework of the data processing approach, the Bayesian model may be combined with an 

optimal location model to place additional data collection points to improve the predictability of travel 

times.  Such an optimization model may be modified to include the following stochastic considerations to 

make the data collection more “robust”: 

1. Reliability of the sensors themselves, and 

2. Possible scenarios of major network disruptions (e.g., link failures). 

 

Bayesian Travel time estimation 

When a vehicle, which may be referred to as a probe vehicle, passes a sensor and then another sensor 

downstream, a travel time t is measured. Given reliable error free sensors, t depends on (a) the current 

mean flow on the link (or route segment), (b) the fluctuations of the flow, and (c) the aggressiveness of the 

driver. Therefore, the underlying network may be modelled as stochastic. Each arc (or route segment) will 

have a mean travel time that changes slowly over time within the day, assuming that flows do not change 

fast unless a major accident takes place on the arc (or the route segment). The actual travel time measured 

fluctuates due to two factors: (1) natural fluctuations of flow that occur in traffic flows (and would occur 

even if the population of driver was homogeneous with identical aggressiveness’), and (2) the 



aggressiveness of the particular driver of the probe that passed the two sensors. The first fluctuation can be 

treated through a distribution describing the mean of the travel time, and latter fluctuation as some sort of 

additive noise.  In the model presented here, a priori knowledge of the means and variances of mean travel 

times on route segments are assumed while sensors (e.g., blue tooth signature readers) that are located at 

given points on the network provide sample data on these travel times. 

These data can be used to update the a priori information on the mean route travel time to improve our 

knowledge about the current travel times on the route. Granted that each update is “slightly behind the 

curve” since the next vehicle travelling may not experience the same travel time, it is still better than off-

line batch processing of the data collected over a large time period.  

We model the network as a directed graph G = (V, A) with a given set of route segments R = {R1, R2, …, Rp} 

on which most traffic flows. Let us denote by 
iR the travel time on route Ri. 

iR is a stochastic variable with 

mean 
iR  and variance var( )

iR . We assume that var( )
iR is constant and known from past data, while 

the mean 
iR is a stochastic variable with some known a priori distribution.  

Let i denote the travel time on arc ai, and let i be a random variable with mean i and variance 2.i We 

assume that the a priori variance 2

i is known for all arcs ai in the network from historical data. Our model 

assumes that i changes dynamically, but slowly; that is, for our Bayesian update it is assumed constant for 

short periods of time (say, for few minutes). Suppose for the current short time period, instead of its true 

value, we have a priori distribution of i , which is Normal with mean i and variance i . Therefore, the 

variance of travel time on arc ai has two components, that is, 2var( )i i i    . For the short period of 

time when travel time data is collected, the expected travel time on arc ai is i ; then together with var( )i , 

a confidence interval of i  can be obtained.  

Suppose that we have n observations of i , then by appealing to the Central Limit Theorem, i , which is the 

average value of the observed travel times, can be approximated by a Normal distribution with mean i  

and variance 2 /i n . With an observation of i , we can update the a priori distribution of i  by appealing 

to Bayesian statistical theory. The updated mean and variance of i are   
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Now the expected value of i  is *

i  and 2 *var( )i i i    . Therefore, an updated confidence interval of 

i  may be computed. 

We can see from equation (2) that the variance of i is reduced. The difference between i  and *

i is 
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The above discussion of travel time prediction on a single arc can be extended to a route R in the traffic 

network consisting of a sequence of arcs. Assuming that the travel times on different arcs are independent, 

the route travel time 
R i

i R

 


 is a random variable with the mean and variance of 

R i

i R

 


 ,    (4) 

2var( )R i i

i R i R

  
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   .  (5) 

The expected value of R  is
i

i R




 . Therefore, a confidence interval of R  can be obtained with 
i

i R




  and

var( )R . 

Assume that we have n observations of travel times on a segment s of the route. Let s  be the average 

travel time on the segment. s  has an approximate Normal distribution with 
2

2 and i
s i s

i s i s n


  

 

  

The updated distribution of s  is then 
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With the updated value of * * and s s  , we have more information on the travel time of that route. Now, 



the predicted expected value of route travel time R  is *
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. The updated confidence interval of R  is tighter than the original 

confidence interval because *

s  is smaller than
s i

i s

 


 .  

The drawbacks of the above model are  

1. Assumption of independence in the randomness of travel times on arcs. Historical data on each arc 

will give means i and variances i . Although one also obtain cross correlations among the travel 

times, the update model will be computationally burdensome and may introduce unnecessary 

delays in computing updates. On the other hand, since travel times are not assumed to vary much 

from update to update, it is felt that the approach will track travel times well. 

2. Assumption that route segments assumed carry most of the flows in the subnetwork. This is not a 

strong assumption as long as the objective is to simply update travel time distributions on the route 

segments monitored. However, if the estimation criterion includes some sort of objective that 

includes the total flow monitored, then additional complementary assumptions would be 

necessary.  For example, if the density of sensors is sufficient high, there would be very few 

alternative routes between sensors, and if equilibrium exists on these routes then the travel times 

on the alternative route segments (and links) could be easily imputed.  

 

Optimal location models  

From equations (3) and (7), larger sample size n, results in larger decrease in the variance of the predicted 

arc and route travel time, respectively.  Different sets of new sensor locations provide different travel time 

samples in the network.  By optimally locating the set can result maximizing predictive knowledge, in the 

sense of decreased confidence interval.  

A first attempt in this direction was presented in [3] where two mathematical models to optimally locate 

sensors on the arcs of a network are presented. The first model is a deterministic model that locates 

sensors to maximize total vehicle-miles monitored. The second model takes into account the stochastic 

nature of travel times and seeks the optimal location of q sensors on the network so that the posterior 

variance of the mean travel times is minimized using an objective based on the model presented through 

(1)-(7).  

Let q denote the maximum number of sensors that can be installed on the network. Three sets of binary 

variables are defined:  xj whose value is equal to 1 if a sensor is located on arc aj and 0 otherwise;  yij whose 

value is equal to 1 if arc aj has the most downstream sensor located on route Ri and 0 otherwise;  zij whose 



value is equal to 1 if arc aj has the most upstream sensor located on route Ri and 0 otherwise.  Parameters 

jk

i are used to denote the reduction in variance of the mean travel time on route Ri if travel times can be 

measured from arc aj to arc ak on that route. Data need to be preprocessed to obtain jk

i  for each route 

and each route segment on that route. When s is the route segment between arc aj and arc ak on route Ri, 

then jk

i  can be calculated by *jk

i s s     , where  
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The mathematical formulation of the problem is then: 
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Objective function (8) maximizes the reduction in variance by maximizing the difference between yij and zij 

weighted by the reduction of variance that is due to updating travel times on the route segments 

monitored. Constraint (9) requires locating no more that q sensors on the network. Constraints (12)-(13) 

ensure that there is no more than one upstream sensor and one downstream sensor on each route. 

Constraints (10) and (11) are logical constraints linking the variables and ensuring that there cannot be an 

upstream (or downstream) sensor on a route if no sensor is located on it. Finally, constraint (14) states that 

if there is a most upstream sensor on route Ri, there must also be a most downstream sensor on the route 

and vice versa. Similarly, if there is no most upstream sensor on route Ri, then there cannot be a most 

downstream sensor on the same route and vice versa. Note that if on a route segment there is only one 



sensor installed, then the installed sensor is both the most upstream and downstream sensor, and the 

vehicle miles monitored on that route is zero. 

The above model is extended in this paper considering both the reliability of the sensors themselves, and 

possible scenarios of major network disruptions (e.g., link failures). Based of literature of unreliable facility 

locations and back-up assignment of customers of failed facilities [1,4], recently, Li and Ouyang [2] modified 

the first deterministic model proposed in [3] to take into account failed most upstream/downstream 

sensors and re-assignment of located sensors as the most upstream/downstream. Indeed, in the long 

period, sensor failure over time can cause loss of data and loss of reliability in the estimates of predicted 

travel times. The authors in [2] consider the probability of failure of each sensor to be uniform and 

independent and develop an integer mathematical formulation that locates a given number of sensors to 

maximize the expected total weighted vehicle-miles monitored.  

In this paper, starting from the proposed Bayesian scheme, we study: 

1. A modification of the stochastic model presented in [3] that takes into account sensors failure: 

We assume the probability of sensor failure to be site specific. The resulting model minimizes 

the expected posterior variance in the prediction of travel time when q sensors are to be 

located.  

2. A modification of the model that takes into account link failure: each link in the network has a 

given known probability of disruption due to external events. When one or more link fails, the 

connectivity of the network changes. This induces re-routing in the network and a consequent 

change in the travel times on the network. The model seeks for the optimal location of q 

sensors to minimize the expected posterior variance over all possible link failure scenarios. 

In the presentation we discuss the Bayesian approach and some experimental results based on simulations, 

which provide insight of the developed models. 

REFERENCES 

[1]. G. Chen, M.S. Daskin, Z.J. Shen and S. Uryasev (2006). The -Reliable Mean-Excess Regret Model for 

Stochastic Facility Location Modeling. Naval Research Logistics, 53,617-626. 

[2]. X. Li and Y. Ouyang, Reliable Sensor Deployment for Network Traffic Surveillance, working paper 

(submitted for publication in Transportation Research Part B.) (2009). 

[3]. P. Mirchandani, M. Gentili and Y. He, Location of vehicle identification sensors to monitor travel-

time performance, IET Intelligent Transportation Systems 3, 3, p.289–303  (2009) 

[4]. L. Snyder and M Daskin, Reliability Models for facility location: The expected failure cost case. 

Transportation Science 39, 3, 400-419 (2005). 


