
A GPS-based Bicycle Route Choice Model for
San Francisco, California∗

Jeffrey Hood1,2, Elizabeth Sall1, and Billy Charlton1

1 San Francisco County Transportation Authority
100 Van Ness Ave, 26th Floor, San Francisco, CA 94102

2 Department of City and Regional Planning, University of California, Berkeley
228 Wurster Hall #1850, Berkeley, CA 94720

Tel: (415) 522-4800, Fax: (415) 522-4829
E-mail: {jeff.hood, elizabeth.sall, billy.charlton}@sfcta.org

1 Introduction

In recognition of the environmental and health benefits of cycling, cities around
the world are promoting use of the bicycle for everyday transportation. Because of
the deterrent of traffic hazards, more cycling will not be possible in auto-dominated
countries such as the United States without a traffic system that is more responsive
to the needs of cyclists. Creating that system in a constrained street network with
limited resources will require reliable information about the trade-offs cyclists make
in choosing their routes.

For example, there is an ongoing debate about the relative merits of bicycle lanes
versus wide curb lanes. While there is little evidence that either is safer than the other
(see e.g. Hunter et al. 1999), proponents of bicycle lanes predict that the perception
of safety will attract new cyclists (Wilkinson et al. 1994), and detractors worry about
motorists’ perceiving bicyclists as illegitimate users of ordinary roads (Forester 1994).
Route choice models can provide the information needed to settle this debate. If
inexperienced or infrequent cyclists are willing to travel farther out of the way to use
bicycle lanes than experienced or frequent cyclists, a lane striping program would be
expected to succeed. Otherwise, a denser network of signed, cyclist-priority, shared
lanes may be a preferable and more attainable alternative.

In addition to informing design, route choice models are needed to improve de-
mand forecasting. While cycling is increasingly being incorporated into models of
mode choice, its utility function is typically represented by gross approximations of
alternative-generic variables that are more predictive of automotive travel. Feeding
the logsums from an estimated route choice model back into the mode choice util-
ity specification would provide a measure of cycling-specific accessibility with which
one could test the effect of network improvements on cycling mode choice. Route
choice predictions also turn distributed trips into the link-level volume assignments
necessary to target operational improvements where they are needed most.

∗This research is supported by a Planning and Research Grant from the California Department
of Transportation.
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Until recently, information about cyclist route choice came almost exclusively
from stated preference surveys because the cost of data collection and computational
complexity of high-resolution network algorithms limited revealed preference studies
to small samples and descriptive analysis (e.g. Aultman-Hall et al. 1997). A recent
stated preference study (Sener et al. 2009) contains a thorough review of the existing
research as of 2007; none of 16 the studies listed applied multivariate analysis to
revealed preference data. While good experimental design can improve the external
validity of stated preference research, the results must still be verified by actual
behavior (Bradley 1988).

Revealed preference route choice research is no longer impractical. The radical
cost reduction and widespread adoption of Global Positioning System (GPS) devices
have made possible the collection of route data on a previously unimaginable scale.
A recent technical report demonstrated the results of the first bicycle route choice
model based on a large sample of GPS observations in the city of Zürich, using trips
extracted from a larger long-duration GPS dataset using a mode detection algorithm
(Menghini et al. 2009). The study found that cyclists tolerate only short detours from
the minimum distance path. However, the set of additional variables analyzed—
number of traffic lights, terrain gradient, and utilization of bicycle facilities—was
small.

This paper presents the results of the first GPS-based bicycle route choice model
for the United States, developed at the San Francisco County Transportation Au-
thority (SFCTA) as part of SF-CHAMP, the San Francisco Chained Activity Model
Process (Outwater & Charlton 2006). It adds to the findings in the Zürich study in
several ways. First, it updates the results for the US context, where street networks,
bicycle facilities, and behavior may differ. Second, rather than extracting routes from
a raw GPS dataset without accompanying information, the study takes advantage of
the large user base of GPS-enabled smartphones, collecting data through a free appli-
cation called CycleTracks, available at http://www.sfcta.org/CycleTracks. Apart
from ease of distribution and increased sampling of the small population of cyclists,
the advantage of this approach is the ability to record personal characteristics and
trip purpose, which is especially important for bicycle modeling given the extreme
difference between utilitarian and recreational travel. Third, the current study uses
a new method of choice set generation: a network-based automatic calibration of
the “doubly stochastic” method of Bovy & Fiorenzo-Catalano (2007). This method
produces more heterogeneous, attractive, unbiased, and exhaustive choice sets than
other methods, yielding more reliable parameter estimates and predictions. Finally,
the study analyzes a richer set of attributes of the network and environment, includ-
ing different types of bicycle facility, freeflow speed, number of lanes, number of turns,
weather, daylight, crime, and traffic volume, which has been shown to be the most
important factor in stated preference surveys.

http://www.sfcta.org/CycleTracks
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Figure 1: CycleTracks for the Apple iPhone

2 Methods

2.1 Travel Data Collection

GPS data of cyclists’ routes were collected using CycleTracks, an application for
the Apple iPhone and Google Android smartphone platforms that was developed for
this study. The interface was slightly different for the two platforms, but generally
worked as follows. At the beginning of each trip, the user selected a trip purpose
and then the phone recorded GPS coordinates until the user canceled the trip or
indicated that the trip was complete. At this point, the user reconfirmed the trip
purpose, entered a comment to accompany the trip (if desired), and submitted the
data to the web server. As one of the incentives for using the application, the user
could, when not recording, view a list of saved trips with maps and simple statistics
such as distance, time, and average speed. The interface for the application appears
in Figure 1.

The user also had the option of entering personal information: age, sex, frequency
of cycling, home and work zip code, and e-mail address. The personal information
was linked to the phone rather than the trip, but we assumed the number of phones
with multiple users was negligible. Each user that entered an e-mail address and
uploaded at least one bicycle trip was entered in a drawing to win one of several $50
iTunes gift cards.

The application was distributed online through the iTunes App Store, the An-
droid Market, and the SFCTA website. To recruit participants, we sent e-mail
announcements and links to local bicycle coalitions and university groups, asking
them to forward them to their members. We also disseminated information about
the study to media outlets in the Bay Area. For more details on the GPS data
collection methods, see Charlton et al. (2010). To download CycleTracks, visit
http://www.sfcta.org/CycleTracks.

http://www.sfcta.org/CycleTracks
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2.2 GPS Post-Processing

Between November 12, 2009, and April 18, 2010, 1,083 users downloaded the ap-
plication, and 952 submitted at least one trip. Including all data in and out of the
Bay Area, 7,096 trips were collected. To obtain the most detailed model specification
possible, we restricted our analysis to the City of San Francisco, where we have the
richest set of network attributes, and to non-exercise trips, for computational feasi-
bility and because many exercise trips lack a true destination. After this restriction,
5,178 trips remained.

Next, we cleaned and smoothed the data, and identified intermediate destinations
and changes of travel mode by analyzing idle times, speeds, and accelerations using the
fuzzy logic method of Schüssler & Axhausen (2009b). The mode detection algorithm
labeled an excessively large proportion of the GPS traces as transit trips because of
high 95th percentile speeds. Therefore, we relabeled any such trace as a bike trip, as
long as the algorithm found no activities and only one stage. Finally, the GPS points
were allocated to the street network using the map matching algorithm of Schüssler &
Axhausen (2009a). After processing, 3,034 bicycle stages from 2,777 traces uploaded
by 366 users were successfully matched to the network.

2.3 Participants

Because participation was limited to smartphone users, and because the greatest
selection rate likely occurred among members of the bicycle coalitions that helped
promote the application, the sample is biased. However, this drawback was out-
weighed by the advantages of the data collection method: reduced cost, increased
rates of sampling for the small population of cyclists, and the ability to record per-
sonal characteristics and trip purposes.

Of those users with data remaining after GPS processing who reported age (N=297),
the mean was 34 with a standard deviation of 9. Of those who reported gender
(N=292), 21% were female. Of those who reported cycling frequency (N=270), 60%
bicycle daily, 34% bicycle several times per week, 7% bicycle several times per month,
and none bicycle less than once a month.

To test for bias in our sample, we compared it to the sample of people in the
2000 Bay Area Travel Survey (Morpace International 2002) who reported at least
one unlinked cycling trip with an origin or destination in San Francisco during the
two-day activity diary. In this sample (N=153), the mean age was 33 with a standard
deviation of 12, and 35% were female. A Welch’s t-test for independent samples
with different variances showed no significant difference in the mean age between the
samples (t = 1.0, df = 235, p = 0.31). However, a z-test for Bernoulli proportions in
independent samples did show that the lower proportion of females in the smartphone
sample was significant (z = −3.5, p = 0.00)1.

1 In applying the tests, we used variance estimates for the BATS sample that ignored non-
random sources of sampling error because BATS provides no jackknife replicate weights. Thus, the
magnitude of the t- and z- statistics may be inflated.
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We did not collect data on other characteristics for which we expected bias, such as
income, because we expected a poor response rate due to privacy concerns. Nonethe-
less, we conjecture that sample bias is a negligble problem for route choice modeling
because the choice is conditioned on already having chosen a destination and mode,
and should depend less on demographics and more on characteristics of the alterna-
tives.

2.4 Network and Environmental Attributes

The network model was created by integrating Geographic Information Systems
data from multiple sources into the network file maintained by the SFCTA. The San
Francisco portion of the network has 33,575 links and 10,234 nodes. Definitions of the
hypothesized relevant attributes—length, speed limit, traffic volume, type of bicycle
facility, street slope, and local crime rate–appear in Table 1.

The bicycle facilities are designated Class I (bike path), II (bike lane), or III
(bike route). Bike paths are off-street facilities for the exclusive use of bicycles and
pedestrians, and exist in San Francisco primarily only in parks, along coastlines, and
as overpasses. Bike lanes are striped in the roadway at a width of about 5 feet,
and are for the exclusive use of cyclists except when vehicles are turning or parking.
Bike routes are shared with vehicle traffic, and are indicated by signs or pavement
markings. San Francisco contains 23 miles of bike paths, 45 miles of bike lanes, and
132 miles of bike routes2. Forty percent of bike routes have an outside lane width of
14 feet or greater, and 17% have “sharrows” (San Francisco Municipal Transportation
Agency 2009).

In addition to network attributes, we selected two environmental variables to de-
scribe the choice context. Hourly rain in inches came from http://www.wunderground.

com/, and sunrise and sunset times came from http://www.mindspring.com/~cavu/

sunset.html.

2.5 Choice Set Generation

Route choice modeling requires, for each origin-destination pair, the identification
of a set of alternative non-chosen routes. In large networks, the universal choice
set is typically of unknown size, and candiates must be extracted from the network.
Since the quality of model estimates and predictions depends heavily on the size
and composition of the choice sets (Prato & Bekhor 2007), several methods have
been proposed, but only methods based on repeated shortest path searches have been
proven in large networks. The most promising of such methods are link elimination,
which was used in the Zürich bicycle route choice study as detailed in Schüssler et al.
(2009), and stochastic path generation. While these methods suffice for auto route
choice, which depends heavily on a single impedance attribute—travel time—they are

2These measurements are neither uni-directional nor bi-directional. That is, the length of one-way
and two-way links are counted equally in the total.

http://www.wunderground.com/
http://www.wunderground.com/
http://www.mindspring.com/~cavu/sunset.html
http://www.mindspring.com/~cavu/sunset.html
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Attribute Source Description

Length SFCTA Arc length in miles

Traffic Volume SFCTA Directional vph from
(5 periods) SF-CHAMP assignment

Freeflow Speed SFCTA In mph

Lanes SFCTA Directional no. of lanes

Bike Class Metropolitan Trans. Commission Type of bike facility (I-III)

Up-slope City & County of San Francisco Rise in 5-ft. contours ×100
/arc length betw. contours

Crime San Francisco Police Department Annual no. violent crimes
per sq. mi. within 1/10 mi.

Table 1: Network Attributes

unsatisfactory for bicycle route choice, which depends on a variety of environmental
variables.

Building on simple stochastic path generation, Bovy & Fiorenzo-Catalano (2007)
present a “doubly stochastic” method in which both link attributes and generalized
cost coefficients are randomized for each shortest path search. This method produces
the chosen route for a high proportion of observations, but the prior distribution
from which the coefficients are drawn must be calibrated. The authors suggest either
(1) using a distribution with a mean equal to values already found in the literature,
which is not possible for novel model estimations and may lead to bias in any case, or
(2) optimizing the distribution based on the proportion of observations reproduced,
which may lead to endogeneity.

We eliminated this need for calibration and danger of bias or endogeneity by
extracting the prior distribution of coefficients from the network. Given an origin-
destination pair (s, t) and a vector of link attribute functions x : A→ Rn

≥0, where A is
the set of links in the network, define the attributes of a path Γ as x(Γ) =

∑
a∈Γ x(a),

and consider the set of all possible path attribute vectors X = {x(Γ) | Γ ∈ Ust},
where Ust is the set of all paths from s to t. For every vector of coefficients β and
scalar r, consider the half-spaces Yβ,r = {y | 〈β, y〉 ≥ r}, where 〈·, ·〉 is the inner
product on Rn, and let conv(X) =

⋂
β,r : X⊂Yβ,r Yβ,r be the upper convex hull of X.

The boundary ∂conv(X) of conv(X) is the attribute production possibility frontier
of the network. Our goal is to sample paths with attributes near ∂conv(X) with
approximately uniform probabilities.

The choice set generation algorithm proceeds in two phases. First, the distribution
of coefficients that produces the attribute possibiltiy frontier is extracted from the
network in a preprocessing phase. Second, the choice sets are generated using doubly
stochastic shortest path searches.
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Figure 2: Extracting the prior coefficient distribution

Preprocessing Phase: Prior Coefficient Distribution Extraction

Select as a reference variable x1 one attribute with non-zero values for each link,
set its coefficient β1 = 1, and establish large boundary intervals [βi,L, βi,H ] for coeffi-
cients i > 1. Define the following notation for the replacement of the i-th coordinate
of a vector v by the value λ: v(i → λ) = (v1, . . . , vi−1, λ, vi+1, . . . , vn). For each
origin-destination pair (s, t), each i, and for any vector of coefficients β, define the
function ξi(b, β) = minΓ∈Ust

∑
a∈Γ 〈β(i→ b), x(a)〉, giving the value of attribute i un-

der generalized cost minimization with coefficients β(i→ b). Let e1 = (1, 0, . . . , 0) be
the unit vector in direction of the reference variable. For each origin-destination pair
in the observations (or a sample of observations), find new boundary values

β′i,L = sup{b ≥ βi,L | ξi(b) = ξi(βi,L, e1)},
β′i,H = inf{b ≤ βi,H | ξi(b) = ξi(βi,H , e1)} (1)

using logarithmic binary search. The interval [β′i,L, β
′
i,H ] is the smallest interval that

will produce all paths with attributes on the non-trivial portion of the x1-xi possibility
frontier (Figure 2).

For some attributes, minimization of xi will tend to co-occur with minimization
of the reference variable x1, and so β′i,L and β′i,H will be ill-defined. If this occurs
frequently, first calculate β′j,L and β′j,H for j 6= i, and perform the above with the j-th
coordinate of the unit vector e1 replaced with the geometric mean of β′j,L and β′j,H for
j 6= i.

To obtain the prior distibtuion to be used in the generation phase, let β∗i,H be the
geometric mean of the higher bounds β′i,U from the sample of observations for which
a range of coefficients is found, and let β∗i,L be the geometric mean of the extracted
lower bounds. The prior distribution is log-uniform on the Cartestian product of the
intervals [β∗i,L, β

∗
i,H ].
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Param. Description Value

M No. random generalized cost coefficient samples 32
N No. link-randomized searches per coefficient sample 3
d Percent overlap filtering threshold 90%
σ Link randomization scale parameter 0.7

Table 2: Choice set generation parameters

Generation Phase: Doubly Stochastic Shortest Path Searches

For M samples of β from the prior distribution, and each origin-destination pair
(s, t), search for the path Γ ∈ Ust that minimizes the generalized cost

∑
a∈Γ

〈
β, x(a)

〉
Za,

for N different samples of link randomization values Za ∼ Unif(1 − σ, 1 + σ).3 Add
the chosen path, and filter the generated set until no paths have overlapping lengths
of over d%.

Parameter Selection and Implementation

The choice set generation method was implemented in Python, as an extension
of the NetworkX package (Hagberg et al. 2008). The parameters subject to analyst
judgment and calibration appear in Table 2.

At first, all attributes that we tested in model estimation were used in choice
set generation. Subsequently, attributes that were not statistically significant were
eliminated from choice set generation to improve sampling rates, and the model was
re-estimated. However, we found it necessary to include one more attribute in the
choice set generation than was used in the utility specification. Without this addi-
tional dimension (we selected length × daily traffic), a correction for route overlap
(see section 3.2) could not be introduced into the utility function without near mul-
ticollinearity of attributes within many choice sets. The attributes used for choice
set generation in the final version of the model appear, along with the initial and
extracted prior distributions for the generalized cost coefficients, in Table 3.

Properties of the Choice Sets

To evaluate the quality of the choice sets, we compared their properties to those
generated using link elimination as in Schüssler et al. (2009). Choice sets were gener-
ated for all observations except for a random sample of 10% of the observations that
were held back from estimation. The average number of unique routes in the doubly
stochastic choice sets was 76, and 51 after filtering. The link elimination choice sets
contained 96 routes each. Despite using the faster A* search algorithm, link elimi-
nation is not faster than the doubly stochastic method which uses Dijkstra because
it frequently finds the same route again and again. Including the time to extract the

3Here our method differs slightly from Bovy & Fiorenzo-Catalano, where each link attribute
value was randomized independently. We found applying link randomization after the generalized
cost calculation to perform equivalently.
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Initial Interval Final Interval
Attribute βi,L βi,H β∗i,L β∗i,H
Length (reference) 1.0 1.0 1.0 1.0
Length off bike paths 1.0×10−7 1,000. 0.082 6.41
Length off bike lanes 1.0×10−7 1,000. 0.075 5.29
Length off bike routes 1.0×10−7 1,000. 0.098 10.8
Length × up-slope (ft/100 ft) 1.0×10−7 1,000. 0.043 2.36
Length wrong way 1.0×10−7 1,000. 0.031 0.49
Number of turns* 1.0×10−7 1,000. 0.009 1.63
Length × daily traffic (1,000s) 1.0×10−7 1,000. 0.010 9.51

*Extracted with other coefficients at their medians

Table 3: Extracted prior coefficient distribution

prior distribution from a sample of 500 observations, the doubly stochastic method
took 4 hours 37 minutes to generate sets for 2,678 observations with 4 processors.
The link elimination method took 8 hours 6 minutes.

The cumulative distribution of the choice sets’ maximum overlap with the chosen
route appears in Figure 3a. The ideal situation is always to produce the chosen route,
so a lower area under the curve is better. Both methods produce the chosen route
exactly for the easiest one-third of observations, but the doubly stochastic method
vastly improves overlap for the more difficult observations.

Furthermore, the doubly stochastic routes are more similar to the chosen route in
cases when the overlap is less than 100 percent. Figure 3b is a frequency distribution of
the choice set’s minumum of a dissimilarity index, the Normalized Euclidean Distance
from the attributes of the chosen route, defined by

NEDni =

√√√√ M∑
m=1

(
xnim − x∗nm

σ∗m

)2

(2)

where i is an alternative in the generated choice set for observation n, M is the
number of attributes in the estimated utility function, x∗nm is the attribute vector of
the chosen route, and σ∗m is the standard deviation of the m-th attribute over all of
the chosen routes. The doubly stochastic method produces routes that are similar to
the chosen route much more frequently. The benefits of this similarity are less biased
and more efficient parameter estimates because of the additional information gained
about the decision-maker’s tradeoffs.

3 Results

3.1 Descriptive Statistics

As described in section 2, the GPS traces we received from users of the smartphone
application CycleTracks were processed for mode and activity detection, and matched
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(a) Overlap (b) Dissimilarity

Figure 3: Choice set quality

Attribute Mean Std. Dev.
Length (mi) 2.23 1.65
Turns per mile 2.62 1.64
Proportion wrong way 0.02 0.06
Proportion bike paths 0.04 0.10
Proportion bike lanes 0.28 0.27
Proportion bike routes 0.24 0.23
Avg. up-slope (ft/100ft) 0.80 1.10

Table 4: Mean and standard deviation of attributes for the chosen routes

to a network model. After discarding 769 exercise trips because of computational
limitations and their lack of a true destination, and restricting our analysis to San
Francisco, 3,034 bicycle stages from 2,777 traces uploaded by 366 unique users were
successfully matched to the network

When a GPS trace was split into multiple stages by the processing algorithm,
the trace purpose was assigned to each stage. The most common trip purpose was
commute (55%), followed by errand (16%), social (10%), shopping (9%), work-related
(5%), other (3%), and school (1%). The means and standard deviations of the at-
tributes for the chosen routes appear in table 4.

3.2 Discrete Choice Modeling Framework

The independence of irrelevant alternatives (IIA) property of the Multinomial
Logit model makes it inappropriate for estimating models containing similar alterna-
tives, where the error terms are correlated. This drawback is particularly problematic
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for route choice models because alternative routes actually overlap. Furthermore, in-
corporating the error structure explicitly is not practical because of the high number
of alternatives.

The other option to correct for the IIA problem is to introduce a similarity measure
in the utility function. We used the Path Size measure of Ben-Akiva & Bierlaire
(1999):

PSni =
∑
a∈Γi

la
Li

(∑
j∈Cn

δaj
L∗Cn
Lj

)−1

, (3)

where Γi is the set of links in alternative i, la and La are the length of link a and
path i, Cn is the choice set for decision-maker n, δaj is one if link a is part of path i
and zero otherwise, and L∗Cn is the length of the shortest path in Cn. The corrected
utility function is

Uni = β · xni + βPS logPSni + εni, (4)

where xni is a vector of route attributes and interactions, β is a vector of coefficients,
βPS is a scalar parameter, and εni are i.i.d. Gumbel. The choice probabilities are

Pni =
exp(β · xni + βPS logPSni)∑
j exp(β · xni + βPS logPSni)

. (5)

The parameters β, βPS were estimated in BIOGEME (Bierlaire 2003) using maximum
likelihood and the DONLP2 optimization algorithm (Spellucci 1988).

3.3 Model Estimation

The estimated parameters for the bicycle route choice model appear in Table
5. A random sample of 10% of the observations were held back to evaluate the
model’s prediction success on this subset separately. Because of extreme variability
in the number of observations per individual in the dataset, each observation was
weighted in the likelihood function by the inverse of the number of observations for
the individual so that each individual would have equal weight. Interaction terms are
indented in italics.

The coefficients indicate that cyclists prefer shorter routes with fewer turns, and
will not go the wrong way down a one-way street without considerable savings in ef-
fort. The variables measuring the proportion of the route containing the three types
of bicycle facility are all measured on the same scale. Therefore, their relative mag-
nitudes indicate the degree to which the average cyclist prefers one over the other.
The effect of bike lanes 1.89 is larger and significantly different from the mean effect
of shared-lane bicycle routes (0.35) at the 5% level, indicating that bike lanes are
preferred on average. The interaction of bike paths with cycling frequency indicates
that infrequent cyclists tend to have a stronger preference for bike lanes, as well. The
negative coefficients on the average up-slope and corresponding interactions indicate
that avoidance of hills is especially strong for women and when commuting. None of
the other network attributes or environmental variables could be incorporated into
the model with statistically significant coefficients. The logarithm of the path size
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Attribute Coef. Std. err. t-stat. p-value
Length −1.05 0.09 −11.80 0.00

Turns per mile −0.21 0.02 −12.15 0.00

Proportion wrong way −13.30 0.67 −19.87 0.00

Proportion bike paths 1.89 0.31 6.17 0.00

Proportion bike lanes 2.15 0.12 17.69 0.00
Cycling freq. < several per week 1.85 0.04 44.94 0.00

Proportion bike routes 0.35 0.11 3.14 0.00

Average up-slope (ft/100ft) −0.50 0.08 −6.35 0.00
Female −0.96 0.22 −4.34 0.00
Commute −0.90 0.11 −8.21 0.00

log(path size) 1.07 0.04 26.38 0.00

Number of observations: 2,678
Null log-likelihood: −10, 006
Final log-likelihood: −7, 213
Adjusted rho-square: 0.23

Table 5: Route choice utility function estimation results

variable corrects for route overlap. Notably, its estimated coefficient is not signifi-
cantly different at the 5% level from the theoretically correct value in a model with
a scale parameter of one.

3.4 Marginal Rates of Substitution

To avoid multicollinearity within choice sets, Length was divided into all of the
other attributes in the utility specification, so direct Marginal Rates of Substitution
(MRS) values are difficult to interpret, espectially the MRS for Turns per mile, which
is in units of mi2 per turn. Therefore we recovered the average MRS for turns, total
rise, and length on links of different types by reparametrizing the attribute space and
differentiating the deterministic portion of utility with respect to the new variables.
The reparametrized utility function is

U = βLTot
(LS + LW + L1 + L2 + L3)

+
βTpMT + βPWLW + βP1L1 + βP2L2 + βP3L3 + βAvSR

LS + LW + L1 + L2 + L3

+ C (6)

where βLTot
, βTpM, βPW , βP1 βP2 βP3 , and βAvS are the model coefficients for total

length; turns per mile; proportion wrong way; proportion of Class I off-street bike
paths, Class II bike lanes, and Class III shared-lane bike routes; and average up-slope,
respectively;
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MRS of Length on street for Value Units
Turns 0.11 mi/turn
Length wrong way 4.02 None
Length on bike paths 0.57 None
Length on bike lanes 0.49 None
Length on bike routes 0.92 None
Total rise 1.12 mi/100 ft

Table 6: Average marginal rates of substitution

LS = Length on ordinary streets
LW = Length wrong way
L1 = Length on Class I off-street bike paths
L2 = Length on Class II bike lanes
L3 = Length on Class III shared-lane bicycle routes
T = Total number of turns
R = Total rise

and path size is held constant.
The marginal utilities of the length on different types of links, holding the number

of turns per mile and average up-slope constant, are

MULS = βLTot
−

∑
i∈{W,1,2,3}

βPiLi/L
2
Tot (7a)

MULj = βLTot
+

∑
i∈{W,1,2,3}

(βPj − βPi)Li/L2
Tot (7b)

and the marginal utilities of turns and rise in elevation, holding the lengths constant,
are

MUT = βTpM/LTot (8a)

MUR = βAvS/LTot (8b)

The average marginal rates of substitution appear in Table 6. The average cyclist
will avoid a turn if it costs no more than one-tenth of a mile, and will avoid climbing
a hill 100 feet tall as long as the detour is less than roughly one mile. The MRS for
the lengths are dimensionless, and so represent the relative disutility of traversing the
different types of links. Cyclists will not travel the wrong way down a one-way street
unless doing so saves more than four times the distance (or its equivalent in turns or
hill climbing) elsewhere. On the other hand, the average cyclist is willing to add a
mile on bike lanes in exchange for only half a mile on ordinary roads.
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Attribute βlow βhigh

Length 1.05 1.05
Length off bike paths 0.42 1.70
Length off bike lanes 0.50 1.98
Length off bike routes 0.08 0.31
Length × up-slope (ft/100 ft) 0.35 1.38
Length wrong way 2.98 11.93
Number of turns 0.05 0.19

Table 7: Calibrated prior coefficient distribution

(a) Overlap (b) Dissimilarity

Figure 4: Prediction quality

3.5 Model Validation

After estimating the model, we calibrated the variance of the choice set parame-
ters and validated the model by looking at predictions for a holdback sample of 303
observations. The calibrated link randomization scale parameter was σ = 0.4, and
the calibrated lower and upper bounds for the random generalized cost coefficient dis-
tribution appear in Table 7. The advantage of reducing the variance of the coefficient
distribution is that we could reduce the number of coefficient samples to 20.

The cumulative distribution of the prediction’s overlap with the chosen route
when the chosen route was not included in the choice set appears in Figure 4a.
Fifteen percent of the observations were predicted exactly. We are not aware of
any other such route choice model validations, so it is difficult to evaluate the rest of
the scale without a basis for comparison. Therefore, we also looked at the predictions’
probability-weighted dissimilarity from the attributes of the chosen route (Figure 4b),
which was usually low.
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4 Discussion

The path size logit route choice model estimated in this study indicates that
cyclists in San Francisco strongly prefer bike lanes to other types of bicycle facility, and
disfavor climbing hills, turning, and deviating excessively from the minimum distance
paths. The model coefficients offer insights into best practices in bicycle network
design and a measure of the user benefits of bicycle facilities, and incorporation of
the route choice model into a larger demand forecasing process will greatly enhance
the responsiveness of planning to the needs of cyclists and provide new abilities to
test policies intended to promote increased use of this efficient travel mode.

Comparsion to Existing Literature

The agreement of our results with those from other areas is mixed. Obviously,
route length (or travel time) has generally been found to be an important factor in
route selection. Another point of agreement is the influence of terrain. The revealed
preference study in Zürich (Menghini et al. 2009) found that the maximum slope of
a route negatively but very slightly influenced route selection and that the average
slope had no effect. A mixed logit analysis of stated preferences in Texas (Sener
et al. 2009) found that steep hills were disfavored more by women an commuters,
which is precisely our finding.

The overall influence of cycling facilities was also consistent with these studies.
While Menghini et al. found that cyclists would only go an additional 233 meters
(0.14 miles) to use a continuous bicycle facility, Sener et al. found they would add
13 minutes (about 2 miles at 10 mph) to an existing commute of less than five miles.
Our marginal rates of substitution, which vary by facility type, are spread between
these values.

However, the strong preference for bicycle lanes in our study differed from Sener
et al., where shared-lane bicycle routes were slightly preferred to bicycle lanes. It is
possible that the disagreement is due to differences in the design of these facilities
between the two regions; however, it is more likely due to the limitations of the stated
preference approach. People often do not do as they say.

The insignificance of traffic volume in our model was surprising, given that it was
the most important factor after travel time in Sener et. al. The problem was likely
due to the difficulty of separating the effects of related covariates in the revealed
preference appraoch, and underscores the importance of employing both stated and
revealed preference methods to obtain a complete picture traveler behavior.

Benefit-Cost Analysis of Bicycle Facilities

The marginal rates of substitution (MRS) of length on ordinary streets for length
on bicycle facilities from Table 6 provide a measure of the user benefits of bicycle
infrastructure that can be used in a benefit-cost analysis of bicycle facilities. For
example, the MRS for length on bike lanes of 0.49 implies that, if no detour is required,
the value to the user of a mile spent on a bike lane is equivalent to a savings of 0.51
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miles without a bicycle lane. Assuming an average speed of 10 mph and value of
time for all trip purposes of $18.82 in 2009 dollars (the average of work and non-work
values used in the San Francisco model), users derive a benefit of approximately $0.96
per mile of travel on bike lanes.

Using the online cost estimation software developed as part of NCHRP Report
552, Guidelines for Analysis of Investments in Bicycle Facilities (Krizek et al. 2006),
we estimate build year capital costs for installing a 5 foot-wide bike lane by restriping
an existing road in San Francisco to be $14,073 per mile, with annual operating and
maintenance costs of $6,500 per mile. Adding the opportunity cost of repurposing
the land at an average value of $86 per square foot (taken from assessor’s data) and
amortizing the costs over 30 years, the annual cost of a new bike lane is approximately
$82,649 per mile.

Therefore, adding a bike lane in San Francisco is justified by the user benefits alone
wherever it will carry more than 235 trips per day. Considering external benefits or
finding space of lower opportunity cost in excessively wide roadways would bring the
benefit-cost ratio above one for much lower cyclist volumes.

Trip Assignment

After estimating the route choice model, we added a bicycle trip assignment mod-
ule to SF-CHAMP (Figure 5). The benefits of obtaining link-level bicycle volume es-
timates will include the identification of areas where operational improvements would
benefit the greatest number of cyclists and the ability to assess the demand for new
facilities, given competition with existing alternatives.

In order to produce the trip assignment in a reasonable amount of time, we pro-
jected trips originating outside of San Francisco to boundary zones by finding the
first San Francisco zone encountered in the minimum distance path. Choice sets
were then generated for the 981 San Francisco zones using single source searches.
Rather than using different random seeds for each origin zone, 20 random seeds were
drawn for each zone from a larger set of 40 random seeds to reduce computation time
while avoiding coupling paths from nearby origins together. The ability to generate
choice sets using single source searches is another advantage of the doubly stochastic
method as the assignment, despite being coded in Python, runs in 12 hours 35 min-
utes. We estimate that using link elimination, which cannot be applied to multiple
origin-destination pairs at a time, would take about 118 days.

Avenues for Future Research

We tried to validate the trip assignment agains intersection counts, with poor re-
sults. We believe that the San Francisco model’s weaknesses with respect to bicycles
further up the chain result in poor trip tables being input to the assignment. Specif-
ically, the mode choice utility specification for the bicycle alternative is currently a
simple linear function of distance, ignoring the benefits of bicycle facilities and the
dissuasive effects of hills.



Hood et. al. 17

Figure 5: AM trip assignment



Hood et. al. 18

Therefore, we would like to feed the route choice logsums back to the mode choice
model. To make this feedback possible, further research is needed into the function-
ality of, and necessary adjustments to, the logsum as a welfare evaluation measure
under the presence of variably-sized choice sets with correlated random utilities. Once
this methodological barrier is resolved, reflecting the attractiveness of route alterna-
tives in the mode choice model would greatly enhance the responsiveness of the mode
choice model to network conditions and, to our knowledge, provide the first conclusive
evidence regarding the influence (or lack therof) of investments in bicycle infrastruc-
ture on mode choice. Given our result that infrequent cyclists value bike lanes more
than frequent cyclists, we expect the influence to be significant.
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