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Background & Objectives 
  
Policy actions such as time-varying pricing schemes aim to achieve congestion relief by re-
distributing travel over the day. Realistic assessments of the benefits of such policies require 
models that can accurately predict the temporal distribution of travel-demand under alternate 
scenarios. In addition, accurate forecasts of trip-timing decisions (both the time-of-day of travel 
and the “soak” time, which is the duration for which a vehicle's engine is not operating preceding 
a successful vehicle start) are also required from the stand-point of air-quality modeling. Thus, 
development of models for time-of-day of travel continues to be a fertile area of research.  
 
Currently, the common, state-of-practice approach to modeling the time-of-day of travel involves 
using the discrete-choice methods such as the Multinomial Logit after breaking down the 24-
hour day into aggregate periods such as the “morning”, “AM peak”, mid-day”, “PM peak”, and 
“evening”. One of the primary issues with this approach is the requirement for apriori 
discretization of the day into periods. Clearly, what these periods should be need not be unique 
or readily apparent (especially because individuals do not choose their time of travel from among 
aggregate periods). Further, such methods might also be restrictive in capturing the temporal 
shifts in travel patterns in the future. The reader will note that the models capture only shifts 
between the pre-defined time-periods and not shifts within time-periods. Finally, each discrete 
period may involve several hours and this resolution may not be adequate for evaluating dynamic 
operation strategies (such as time-varying tolls) which may require demand at a finer temporal 
resolution. Consequently, it would be more appropriate to model time as a continuous entity to 
overcome issues of apriori discretization and to achieve the finest level of resolution possible to 
support evaluation of policy actions.  
 
While the conceptual extension of the discrete-choice methodology to accommodate continuous 
time-of-day choices (or equivalently choices at a very fine resolution of 5 or 15 minutes) is 
straightforward, practical difficulties have been documented. This is primarily because of the 
need for a very large number of alternative-specific parameters (constant terms and coefficients 
on non-time-varying explanatory factors). To address this, functional approximations to 
alternative-specific parameters have been suggested (Ben-Akiva and Abou-Zeid, 2007; Hess et 
al., 2005; Vovsha and Bradley, 2004, Cambridge Systematics, 2004; and Guo et al., 2005). As 
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an alternative to this approach duration-modeling techniques have also been adopted to model 
time-of-day on a continuous scale (see for example, Bhat and Steed 2002; Gadda et al., 2007; 
Komma and Srinivasan, 2008). The objective of this study is to undertake a theoretical and 
empirical comparison of these two approaches. The next section provides an overview of the two 
continuous-time modeling methods and describes the comparative evaluation procedure. This is 
followed by a description of data to be used for the analysis.  
 
Methodology 
 
This section presents a brief overview of the two approaches for modeling time-of-day choices 
on a continuous-time scale and subsequently discusses the proposed approach for empirical 
comparisons. Prior to further discussions, it is useful to note here that both the methods discussed 
below still involve discretizations of time. However, these discrete periods can be as small as 5 
or 15 minutes and hence these models may be construed as continuous-time approaches for all 
practical purposes. Further, it is also useful to keep in mind that self-reported times from travel 
surveys are often rounded off to the nearest 5, 10, or 15 minute period and hence it may not be 
possible to empirically estimate models at any finer resolution.  
 
MNL with functional approximations to alternative-specific parameters 
 
The utility for discrete period t and decision maker q is given by:  
 

 sy variableexplanator varying-on time tsCoefficien 
 period discretefor  sy variableexplanator  varyingnon timeon  tsCoefficien 

 period discretefor constant  specific eAlternativ 
 period discreteat  cost)  time, travel(example sy variableexplanator  varyingTime 

 sy variableexplanator  varyingtime-Non 
Where

   

=
=
=

=

=

++=

∈∀+=

γ
β
α

γβα

ε

t
t

tZ

X

ZXV
TtVU

t

t

qt

q

qtqttqt

qtqtqt

 

 
As the number of discrete time periods (t) can be numerous considering that each discrete period 
is of very short duration, the number of alternative-specific parameters ( tt βα , )  to be estimated 
can be very large. To address this issue, functional approximations may be adopted. One such 
approximation (in the case of the constant terms) could be: 
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If the choice set comprises 96 15-minute intervals (totaling 24 hours), then the above 
approximation reduces the number of alternative-specific constants from 95 to 8.  
 
The probability that decision maker q chooses discrete period t is then be given by the logit-
formula: 
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Hazard-duration model 
 
The “hazard” for departing at any time of the day u (measured on a continuous scale, say in 
minutes from 3 AM) is defined as the probability that a person will depart immediately after time 
u conditional on not departing until time u. This hazard is assumed to have the following 
functional form: 
 

( )( )0( ) ( ) expu u X Z u wλ λ β γ= +                                                      
 
In the above equation, 0 ( )uλ  is the baseline hazard. X and Z(u) are vectors of non-time varying 
and time varying covariates respectively.  For example, X could include the socio-demographic 
characteristics of the worker whereas Z(u) includes the travel times between home and work 
locations at time u. β  and γ  are the vector of coefficients on the non-time varying and time 
varying covariates respectively. w  is the unobserved heterogeneity term assumed to follow a 
gamma distribution (with variance = 2σ ) and independent of the covariates.  
 
We adopt a non-parametric distribution for the baseline hazard (i.e., 0 ( )uλ ) in our specification. 
For this purpose, we discretize the continuous time into K unique time intervals. Let p denote the 
index for the time intervals (p = 1, 2,…, K) and pa  represent the upper bound time corresponding 
to discrete interval p. Therefore discrete period p represents the time interval [ 1pa − , pa ] and the 
duration of this discrete period is given by, pΔ  = 1p pa a −− . The baseline hazard is then assumed 
to be a constant within each of these discrete periods (i.e., 0 ( )uλ  = exp( pδ ) if u element of 
discrete period p).  In addition, we assume that the value of time-varying covariates remain 
constant within each discrete time period (i.e., Z(u) = pZ  if u element of discrete period p).  
 
The unconditional probability of departure in interval p is given by (See, Bhat and Steed, 2002 
for details) 
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Where  0δ = −∞  and Kδ = +∞ .  
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Based on the brief descriptions from above, it may be noted that the first model is based on the 
theory of utility maximization whereas the second is not. Further, the first model assumes that 
the probability of departure at any time period is a function of the travel times prevailing during 
all times of the day whereas in the second model, this probability is only a function of travel 
times prevailing at all times until the discrete time interval under consideration and does not 
depend on the travel times after the time interval under consideration (although this can be 
addressed by introducing future travel times as explanatory variables, see for example, Komma 
and Srinivasan, 2008). Finally, unlike the hazard structure, the first model does not recognize the 
inherent ordering of the choice alternatives and its MNL structure leads to the IIA property.  
 
In this research, these two approaches will be empirically compared in the context of time-of-day 
choices for home-to-work commute travel. Specifically, empirical models using the two 
approaches will be estimated using the same dataset and compared. Further, the models will also 
be compared in terms of their ability to predict the time-of-day choices on a validation sample. 
Finally, aggregate shifts in the temporal demand patterns as a consequence of travel time 
changes will also be examined using hypothetical simulations.  
 
Data 
 
The San Francisco Bay Area Travel Survey (BATS) conducted in the year 2000 by is the 
primary source of data used in this study. In this survey, detailed activity-travel and socio-
economic information was collected from 33402 members (14529 households) for a two-day 
period. These data were augmented with land-use and inter-zonal level-of-service information 
obtained from Bay Area Metropolitan Transportation Commission (MTC). The characteristics of 
the Traffic Analysis Zones (TAZs) like the population and employment densities, area type 
(CBD, Urban, Suburban, and Rural), and land-use mix indicators were included in the land-use 
file. The inter-zonal level-of-service file provides data on the network characteristics such as 
distance, travel time, and costs for the peak and off-peak periods. The final estimation dataset 
comprises of 4661 commute journeys to work obtained from 3162 persons (fully flexible, full-
time workers) and 2894 households.  
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