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Abstract 
 
This paper introduces a new heuristic approach for improving the computational efficacy of a discrete 
network design model that accounts for User Equilibrium Dynamic Traffic Assignment (UE-DTA) 
conditions, by employing genetic algorithm (GA). The cell transmission (CTM) based DTA model is 
used to reflect traffic realities and capture traffic dynamics. The mathematical model of this problem 
consists of two level problems: upper-level and lower-level problems. The upper-level problem is to 
create feasible network design combinations under a budget constraint using GA and the lower-level 
problem is for the network evaluation using CTM-based DTA. Extensive experimental design and 
procedure on GA operators and parameters are conducted to find the appropriate operator and 
parameter. Statistical tests are performed for model validation. The computational complexity analysis 
has shown that the proposed approach could significantly reduce the computational burden without 
losing solution quality.
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1. INTRODUCTION AND BACKGROUND 
 
The main purpose of the transportation network modelling is to design transportation networks to 
achieve a desirable level of network performance. Most of traditional Network Design Problems 
(NDPs) and its solution algorithms (Magnanti and Wong, 1984; Bell and Iida, 1997) were relating to 
the Continuous NDP (CNDP) dealing with road expansions due to problem complexity of Discrete 
NDP (DNDP) such as an addition of lane, a road closure scheme, and the provision of a new public 
transport service. The analytical optimization methods to solve DNDP works well for only a very 
small scale network, because DNDP is non-convex and combinatorial problems that usually lead to 
NP-hard problem. To overcome these limitations of existing solution algorithms to DNDP, many 
researchers have proposed the innovative solution search techniques such as Genetic Algorithm (GA) 
(Holland, 1975; Goldberg, 1999), tabu search (Glover, 1989), and simulated annealing (Kirkpatrick, 
1984).  
 
The heuristic approaches to solve DNDP using GA and tabu search were proposed by Mouskos (1991) 
and Xiong and Schneider (1992), respectively. In their experiments, they evaluated the networks under 
Deterministic User Equilibrium (DUE) conditions that did not account for traffic realities in the traffic 
assignment procedure, and used Volume-to-Capacity (V/C) ratio when selecting candidate links. 
Recently, Jeon et al. (2005, 2006) and Jeon (2005) proposed a selectorecombinative GA-based 
approach for relaxing computational complexity of DNDP under Deterministic User Equilibrium 
(DUE) conditions. Unlike existing deterministic DNDP, this model proposed uses the density-to-jam 
density (D/J) ratio, which is analogy to V/C, but can exactly capture the traffic conditions, by 
accounting for traffic realities such as link spillover and shockwave propagation through the Dynamic 
Traffic Assignment (DTA).  
 
DNDP can be formulated as only a Bi-Level Programming Problem (BLPP) or a Stackelberg game 
(von Stackelberg, 1934). A Stackelberg game is known as a leader-follower game. The interaction 
between network design authority (i.e., the leader) and network users (i.e., the follower) is a sort of 
game between two players: the leader and the follower. Even though the follower consists of collective 
users, it can be treated as one player (Chen, 1998). The network user is trying to minimize his/her own 
travel time by choosing his/her best route, while the network design authority is trying to maximize a 
transportation system performance in terms of Total System Travel Time (TSTT). In case of a 
Stackelberg game (e.g., UE-DNDP), the leader controls the design variable to maximize transportation 
system performance in terms of users’ total travel times resulting in the leader’s strategy (i.e., network 
design combination). When evaluating user behaviors in networks, accounting traffic realism in 
network evaluation is a critical issue. CTM-based UE-DTA simulation model developed by 
Ziliaskopoulos and Lee (1996) is used to solve the lower-level problem. Candidate links to be 
improved are selected based on D/J parameter, which is generated from the CTM-based DTA model.  
 
Furthermore, since the well-known Braess’ paradox (Braess, 1968) is often observed in DNDP, it 
needs to search exhaustive feasible design combinations. To search an exhaustive solution space 
efficiently, this study employed GA as a heuristic solution search method, which can search and 
manage multiple solutions simultaneously. The purposes of this study are (i) to develop a GA-based 
heuristic solution search methodology for discrete transportation network design problems accounting 
for DTA conditions, (ii) suggest a new measure of effectiveness such as D/J used in choosing 
candidate links, and (iii) reduce the computation time when evaluating DNDP.   
2. MATHEMATICAL FORMULATIONS OF DISCRETE NETWORK DESIGN PROBLEMS 
 
Mathematical formulations for BLPP of UE-DNDP. BLPP arises when two independent decision 
makers ordered within a hierarchical structure have their own objectives (Gümüş and Floudas, 2001). 
The decision maker (i.e., users or followers) at the lower-level tries to achieve his/her objective under 
the given parameters (i.e., network design combinations) from the upper-level decision maker (i.e., 
leader or network design authority) accounting for budget limit and with complete information on the 
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reactions of network users (Hansen et al., 1992). In this context, BLPP for UE-DNDP is considered as 
a Stackelberg game.  
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Figure 1 Stackelberg game between network design authority and network users 

 
The network design authority at the first stage of the game initiates the move by setting the design 
solution, z . When users make their move at the second stage of the game, they will choose the 

optimal flow h  to solve the UE-DTA problem. The equilibrium of such a Stackelberg game shown 
in Figure 1 can be defined as follows: 
 
Stackelberg Equilibrium: In the non-cooperative game between the network design authority and the 

network users, the strategy combination ( z , h ) is a Stackelberg equilibrium if and only if it solves the 

following bi-level programming problem (BLPP):  
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Here, ( )T κ
⋅  refers to TSTT of total network users under th

κ  network design combination. The 

vector κz  consisting of binary numbers (i.e., 0s and 1s) refers to th
κ  network design combination. 

κh =( κx , κy ) refers to the best user behavior according to the network design combination. The 

objective of upper-level problem is to select the optimal network design combination satisfying with 
not only budget constraint but also minimum TSTT.  
Since the upper-level (U) is a discrete problem that means it is not differentiable, and BLPP is difficult 
to solve in analytical methods. This means that universal solution algorithms do not exist accordingly 
even though the lower-level (L) is a differentiable problem. The major difficulty in solving BLPP is 
that the response function of the user to the decisions of the design authority might not be defined 
uniquely. Furthermore, the overall formulation of these interactions between the design authority and 
users is a non-convex and non-smooth model (Breiner and Avriel, 1999). Therefore, it needs to use an 
efficient search algorithm like SGA to search the network design combination in the upper-level 
problem, while CTM-based DTA model is used to evaluate the lower-level problem.  
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3. SOLUTION PROCEDURE 

 

Step 0: Initialization: Input O-D demand and network, and Gen =0, pop=0 
Step 1: Generate the initial binary chromosome and population 

Step 1.1: Perform a simulation-based DTA model with initial conditions (no network 
improvement) 

Step 1.2: Generate the cumulative cell density and flow for aggregation time intervals during peak 
period 

Step 1.3: Select cells in which maximum cell density-to-jam density ratio within the link is greater 
than specified criteria 

Step 1.4: Map the cells selected in Step 1.3 onto the concerned links 
Step 1.5: Select L links which are most congested links and chromosome length 
Step 1.6: Generate the initial population 

Step 1.6.1: pop = pop + 1 
Step 1.6.2: Generate the binary chromosome randomly 
Step 1.6.3: Check a budget limit 
Step 1.6.4: If a chromosome satisfies with a budget limit and pop < Popsize, go to Step 1.6.1; 

otherwise repeat Step 1.6.5 until satisfying a budget limit 
Step 1.6.5: Change a gene into “0” by random selection of gene, go to Step 1.6.3 

Step 2: Genetic algorithm procedure 
Step 2.1: Gen=pop=0 

Step 2.2: Gen=Gen + 1 

Step 2.3: Create population of next generation 

Step 2.3.1: pop=pop + 1 

Step 2.3.2: Select the two parents from the previous generation according to selection 
methods 

Step 2.3.3: Do crossover operations 
Step 2.3.3.1: Check a budget limit 
Step 2.3.3.2: If a chromosome satisfies with a budget limit, go to Step 2.3.4; 

otherwise repeat Step 2.3.3.3 until satisfying a budget limit 
Step 2.3.3.3: Change a gene into “0” by random selection of gene, go to Step 

2.3.3.1 

Step 2.3.4: Compare the fitness values of offspring and parent  

Step 2.3.5: Keep the better one 
Step 2.3.6: If pop < Popsize, go to Step 2.3.1; otherwise go to Step 2.4 

Step 2.4: Calculate the fitness values f2(Gen,Popsize) for the population of generation Gen 

Step 2.5: Select best K chromosomes and store them onto the best chromosome database to be 
evaluated by a simulation-based DTA model 

Step 2.6: Check convergence criterion (i.e., f2(Gen,1)=…=f2(Gen,Popsize)). If convergence 
criterion satisfies, then go to Step 3; otherwise go to Step 2.2 

Step 3: Evaluate the feasible chromosome using a simulation-based DTA model 

Step 3.1: κ=1, Gen=0 
Step 3.2: Select best K chromosomes at generation Gen 
Step 3.3: Evaluate the updated network based on best K chromosomes 

Step 3.3.1: Conduct a CTM-based DTA model with the κth improved network  
Step 3.3.2: If κ ==K, then go to Step 3.4; otherwise κ=κ+1 and go to Step 3.3.1 

Step 3.4: Select the best chromosome with f1(Gen)=minimum TSTT among the best K 
chromosomes, regardless f2(Gen)  

Step 3.5: If Gen==Maximum generation, then go to Step 3.7; otherwise go to Step 3.6 
Step 3.6: Gen=Gen+1, then go to Step 3.2 
Step 3.7: Select the best network design combination among the best chromosomes for all the 

generations 
Step 3.8: Stop 
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4. GA PARAMETERS AND OPERATORS 

 

The overall procedure for experimental design and numerical tests of GA operators and parameters 
and to choose GA parameters and operators follows the procedure of Jeon et al (2006). For this test, a 
aggregate Sioux Falls networks (76 arcs, 24 nodes and 552 origin-destinations pairs) was used. A 
simulation time is a 6600 [2200:2200:2200] seconds with a 6 seconds time interval. It is assumed that 
travel demand is distributed in the ratio of 0.2:0.6:0.2 over [2200:2200:2200] seconds time period, 
respectively, to replicate peak hour conditions to initial candidate links selected from the initial UE-
DTA without network improvement conditions.  
 
To select appropriate GA operators, the preliminary test was conducted. Each gene in chromosome 
corresponds to each link. The gene consists of binary strings 0s or 1s signifying that the link capacity 
is improved if gene is ‘1,’ and ‘0’ otherwise. A chromosome length (L) could be up to 76 genes (i.e., 
number of maximum links), but for the sake of convenience 30 genes are considered through the initial 
dynamic traffic assignment without network improvement. In addition, it is assumed that a given 
budget is $20 Million, and the cost for adding unit increase of link capacity is approximately $2 
Million per mile. 
 
Extensive experimental design and test have been conducted with a crossover probability 0.95, 
tournament sizes (s=2~14), and crossover types (two-point and uniform). Through this test, a 
tournament selection without replacement option showed the best fitness value with uniform 
crossovers, without mutation, and s>10. As shown in Figure 2, the optimal population size 
(Popsize=250) was found through network evaluation with different population sizes 
(Popsize=100~300), Pc=0.95, s=14, and uniform crossover. Figure 2 also showed that selection rate 
(SR) 20% of chromosomes could be used for network evaluation without losing solution quality in 
terms of Total System Travel Time (TSTT). 

151800
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155400
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Figure 2 Contour plot of TSTT vs Selection ratio and Population size 

 
The effect of a population size factor is statistically significant since F =24.610>2.447= F0.05(4,120). 
In this test, the case of Popsize=250 provides a better solution in terms of TSTT on average than other 
population sizes.  
The effect of interaction between selection rate and population size factors is not statistically 
significant since F =0.091<1.478= F0.05(44,120). Therefore, there is no interaction effect between 
selection rate and population size factors in TSTT.  
 
6. MODEL VALIDATION 

 
For model validation, this study uses the Exhaustive Search Method (ESM) for UE-DNDP with a 
small network to examine and validate the quality of the network design solution of SGA-based UE-
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DNDP model. For validation, five different test networks with two different demand levels for each 
network shown in Table 1. In this test, SR=20% is used for evaluating improved networks.  
 

Table 1 Small test networks for model validation 

Test network # # of nodes # of links # of origins # of destinations Total demand level 
Budget level 
($,Million) 

Test-net1-1 12 32 12 12 4252 2.0 

Test-net1-2 12 32 12 12 8304 2.0 

Test-net2-1 8 20 8 8 2734 2.0 

Test-net2-2 8 20 8 8 5468 2.0 

Test-net3-1 10 26 10 10 4514 2.0 

Test-net3-2 10 26 10 10 9028 2.0 

Test-net4-1 12 34 12 12 5828 2.0 

Test-net4-2 12 34 12 12 11656 2.0 

Test-net5-1 8 22 8 8 2188 3.0 

Test-net5-2 8 22 8 8 4376 3.0 

 

 

Since all the calculated t-stat values are less than t0.025(9)=2.262, the null hypothesis is not rejected. 

From this test, with 9 degrees of freedom, we do not reject H0: based-ESMbased-SGA TSTT  TSTT = at the 
α=0.05 significance level. In other words, we can assume the average minimum TSTT resulting in 
SGA equals to the average minimum TSTT resulting in ESM under the same network evaluation 
environment. The solution accuracy in terms of TSTT was as high as 99 % (i.e., average relative 
difference of 1 %) from the model validation with small network. Since the CTM-based DTA model 
used here adopts a mesoscopic model based on CTM to propagate traffic flow on networks, the model 
makes it possible to capture more precise traffic dynamics. 
 

7. SUMMARY AND CONCLUSIONS 

 
A bi-level UE-DNDP model accounting for dynamic traffic assignment conditions was formulated and 
proposed the SGA-based solution search procedure for solving UE-DNDP model. The SGA-based 
solution search procedure was developed to create feasible design combinations by accounting for a 
budget limit. The interface to integrate with SGA model and a mesoscopic simulation model was 
developed to simulate the traffics based on the networks generated by SGA model and capture 
interactions between vehicles, accounts for link spillovers and shockwaves while assigning traffic. The 
density-to-jam density ratio (D/J) was proposed as a new measure of effectiveness, rather than V/C 
used in the deterministic user equilibrium model. Accordingly, the proposed model overcame the 
problem that one flow state corresponding to two different traffic conditions (congested and 
uncongested states) which were not accounted in the deterministic user equilibrium model.  
 
We found that the proposed model could find a reasonable solution by evaluating DNDP with best 
20% chromosomes of population. The solution accuracy in terms of TSTT was as high as 99% from 
the model validation. Furthermore, the statistical test showed that there was no significant difference 

between based-ESMTSTT  and based-SGATSTT . Therefore, the proposed solution procedure could 
provide a reliable solution for the complex DNDP. Furthermore, the proposed search procedure can 
improve the search time up to 5 times due to SR=20%. 
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