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Abstract 
This study aims to present current practices in mode choice analysis addressing the contemporary toll study.  A 
literature review is conducted based on several case studies to assess the impacts of road pricing. Previous 
experience in developing effective mode choice models are discussed, including the model structure, input data, 
critical factors influencing mode choice, elasticity of demand, and mode shift. Based on this review, a general 
procedure for implications of new toll roadways are suggested for transportation planners and policy makers.  
 
Structure – the Mode Choice Model 

A traveler’s chosen mode of travel is a rational trade-off decision weighing the various costs imposed on 
and benefits available for that particular mode choice. Due to this, the impact of roadway tolls on mode choice is 
complex because the cost of travel is but one of many factors that influence a traveler’s choice of transportation. It is 
therefore necessary to assess other factors that weigh in a traveler’s decision in order to estimate the impact of 
tolling on mode choice.  

Naturally, the efficacy of discrete choice modeling is dependent foremost on the diligent inclusion of 
explanatory variables. This review catalogues four interrelated dimensions of analysis shown to exert significant 
influence on mode choice (see Table I): 

Table I: Mode Choice Explanatory Variables by Dimensions and Planes of Analysis 
Dimensions of Analysis Planes of 

Analysis 
Socio-economic Travel Cost Temporal Categorical 

  Household Income Parking On-Vehicle Time Transit Strike 
Time of Day Autos per Drivers Gasoline Walk Time Seasonal Variation 
Trip Purpose Vehicle Occupancy Maintenance Transfer Wait Time 
Mode  Number of Workers Tolls Number of Transfers 

Alternative-specific 
Intangibles 

Household   Fares Headway Wait Time   
Income     Transit to Work Time   
Source: Train 1980, Dehghani, et. al. 2003, Washbrook, et. al. 2006, Kazimi et. al. 2003, Hirchman et. al. 1995 

Two additional “planes” of analysis: time of day and trip purpose, are included in several comprehensive 
model structures. Typically, these additional planes of analysis are included to more realistically capture real-world 
conditions in each unique study region, as well as to extend a logit model’s capability to effectively micro-analyze 
the impact of different policy scenarios. For example, by splitting the travel cost dimension by peak and off-peak 
time periods, as well as by work and non-work trips, variations in a traveler’s sensitivity to increased travel costs 
(e.g., choosing a toll roadway) may be detected and quantified. Results from the Florida DOT Turnpike Enterprise’s 
(FLDOTTE) recent comprehensive mode choice model found that an increase in travel costs was tolerated more 
during off-peak than peak hours for work than non-work trips (Dehghani, et. al. 2003). Integrating the time of day 
and trip purpose planes of analysis enables the logit model to effectively identify and fine-tune potential operational 
or policy changes (e.g., variable toll pricing scheme) aimed at maximizing efficiency. 

 
Data Source – Populating and Calibrating the Mode Choice Logit Model 

The mode choice model must be properly calibrated by real-world data for forecasting future conditions. Each 
explanatory variable is accompanied by a coefficient value that represents its magnitude of influence. Two types of 
data sources are typically used, including surveys and observations, to populate and calibrate a mode choice model. 

• Revealed and Stated-Preference Surveys – Survey questions can directly address explanatory variables 
chosen for the mode choice model. Essentially this provides quantifiable data along various dimensions 
and planes of analysis. Revealed-preference surveys focus on trip characteristics that actually took place, 
yielding such information as origin and destination, mode choice considerations and travel time. 
However, surveys of this type are limited by the inability to predict behavior under conditions that do 
not yet exist (COMSIS 1996). Stated-preference surveys fill this void by presenting the respondent with 
scenarios based on hypothetical conditions. Despite concerns as to the accuracy of stated-preference data 
(e.g., unrealistic optimism, unforeseen influences), it provides crucial statistical data for projects in 
which new travel modes or improvements are proposed, such as a new toll facility. 
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• Observations – Observed data, such as land use patterns, traffic counts, and other network 
characteristics, are useful as a reference against revealed-preference data and, in some cases, a substitute 
for missing data. For example, origin and destination data may be extrapolated from a longitudinal 
analysis of traffic volumes, employment location and density, and motor vehicle registration data 
(Hirchman et. al. 1995). Other cases in which observed data are required include transportation facilities 
with endogenous attributes that influence a traveler’s decision. For example, modeling traveler behavior 
for the San Diego I-15 congestion pricing project required the inclusion of an explanatory variable to 
account for potential time savings from an existing HOT lane facility. As a function of the difference in 
travel time between the I-15 HOT lanes and its parallel free lanes, the required data on potential time 
savings was estimated using two months of time-of-day speed data collected by loop detectors 
embedded in the roadway (Kazimi et. al. 2003). For choice modeling projects with a future planned road 
pricing scheme (e.g., congestion management), data for the time savings explanatory variable may be 
calculated through travel demand analysis and adjusting relevant data observed at other roadways with a 
comparable facility.  

The use of feedback and observed data for calibrating mode choice models deserves special note, given its 
potential impact on the statistical accuracy of explanatory variables. Since some of the outputs of the linear four step 
travel forecast procedure are not consistent with inputs to preceding steps, substantial distortion of explanatory 
variables that influence traveler behavior may occur (FHWA report 1999). As a solution, the process of “feedback” 
has been implemented by reintroducing output of one step as input to a previous step until the revised output 
“converge” on a defined set of criteria. Employing feedback as a calibration mechanism for mode choice modeling 
requires the integration of outputs from route assignment through an iterative feedback process. Heavily emphasized 
by the comprehensive FLDOTTE modeling system, iterations of the feedback loop should continue until a 
reasonable convergence between modeled outputs (e.g., average trip length, speed, link volumes) and observed or 
revealed data (e.g., screenline volumes, patronage at key toll plazas, average trip length) is achieved (Dehghani, et. 
al. 2003). This best practice approach arguably ensures that the model is properly calibrated to produce realistic 
highway loadings and travel times based on crucial explanatory variables that affect the mode choice. 

 
Tolls and Mode Choice – Factors of Influence, Elasticity of Demand, and Mode Shift 

Table II presents averages and ranges of the magnitude for 140 coefficient values along the four 
dimensions of analysis, summarizing the findings from three mode choice models surveyed in this study. 
   

Table II: Typical Influence of Explanatory Variables by Dimensions of Analysis 
Magnitude/Coefficient of Influence 

Negative Positive Dimensions of 
Analysis 

Range Average Range Average 
Socio-economic -0.0000474 to -0.008   -0.0041 1.21 to 2.08 1.77 

Travel Cost -0.00091 to -0.206 -0.019     

Temporal -0.004 to     -4.595 -0.077     

Categorical -0.524 to    -5.17       -2.66     
                                          Source: Train 1980, Dehghani, et. al. 2003, Washbrook, et. al. 2006   
 
Factors of Influence 

Overall, temporal factors had the largest influence on mode choice decisions, followed by travel cost and 
socioeconomic dimensions. Due to complex interactions between variables in the logit function, the influence of 
many explanatory factors may exhibit threshold dynamics in traveler mode choice decisions despite its 
representation as a constant coefficient. For example, Washbrook (et. al. 2006) found that the likelihood of a traveler 
choosing a transit mode dramatically decreases as transit in-vehicle time variable approaches revealed SOV in-
vehicle time, and as headway or transfer wait time approaches 10 minutes. This threshold effect emphasizes that the 
systemic impact of any one explanatory variable on traveler mode choice may be non-linear. 

The large range of coefficient values for each dimension in Table II reflect not only the different 
magnitudes of influence, but also the variation in traveler preferences from different regions captured by each mode 
choice model. For example, the coefficients of in-vehicle time for both auto and transit are -0.037 in Vancouver, -
0.015 in Florida, and respectively -0.0473 for auto and -0.0192 for transit in San Francisco. This indicates that while 



the disutility of auto and transit in-vehicle times are comparable in Vancouver and Florida, travelers in San 
Francisco may better appreciate the benefits of riding transit, such as being able to read and avoiding the stress of 
commuter traffic (Train 1980). Due to the fact that there are numerous instances of such divergences even for basic 
attributes of travel, many conclusions drawn from a mode choice model (especially highly aggregated conclusions 
such as elasticity) in one region may not be fully applicable to others. 

It is therefore difficult to assess the impact of roadway tolls based on the experiences of comparable 
facilities elsewhere. Despite the limited generality of modeling results, there are several inter-variable relationships 
with regard to travelers’ perceived utility for roadway tolls that are typical of the three mode choice analyses 
surveyed herein. Trip length, as captured by the temporal dimension, is highly correlated with travelers choosing 
tolled roadways due in part to the longer spacing between interchanges (Dehghani et. al. 2003, Kazimi et. al. 2003). 
In the socioeconomic dimension of analysis, household income is a significant explanatory factor of a traveler’s 
sensitivity to toll prices, an aspect that may be more fully explored by concurrently considering the temporal and 
travel cost dimensions.  

The mode choice model based on revealed-preference data for nested automobile modes (i.e., FasTrak 
HOT lanes, SOV parallel free lanes, and carpool users) in the San Diego I-15 HOT facility discovered that during 
peak demand periods with high variability in time savings, more travelers are willing to pay to use the FasTrak HOT 
lane when toll price exceeds the threshold of $1.90. Conversely, peak periods with high variability results in lower 
FasTrak patronage if toll prices are below $1.90, suggesting that the disutility of roadway tolls diminishes as toll 
price increases (Kazimi et. al. 2003). This counterintuitive finding is also echoed by the mode choice model in 
Vancouver based on stated-preference data, in which it was also found that this threshold relationship between 
temporal and cost dimensions is statistically significant only for travelers above a certain income bracket ($40,000 
CND) (Washbrook, et. al. 2006). Similarly, the sample of travelers using FasTrak HOT lanes is relatively wealthy, 
with 33% of all respondents in the $100,000 USD income bracket. These relationships suggest that middle to higher 
income travelers tend to view toll price as a measure of congestion, and therefore are more willing to pay higher 
tolls for potentially greater time savings. 

 
Elasticity 

The complex relationships between explanatory variables as captured by mode choice models ultimately 
culminate in elasticity values, or aggregate estimates of the influence of any one variable on the disutility of a 
traveler mode choice. In other words, elasticity measures the ratio of decrease in the likelihood of a certain mode 
being chosen due to the absolute increase in an explanatory variable. Table III below summarizes typical elasticity 
estimates gathered from a wide range of mode choice studies for a number of explanatory variables. 
 

Table III: Typical Elasticities of Travel Demand 

Elasticity Explanatory Variable 
Range Average 

Fuel -0.05 to -0.55 -0.24 

Parking -0.11 to -0.16 -0.14 

Tolls -0.02 to -1 -0.32 

Travel Time -0.27 to -1.33 -0.59 

Auto Wear and Ownership -0.12 to -0.31 -0.22 

Overall Operating Costs -0.06 to -0.52 -0.24 
   Source: Burris 2003 
 

As expected, time elasticities of travel demand were highest among the list of influences followed by 
elasticity related to cost. Due to variations in magnitude of influence for the myriad explanatory variables in the 
temporal dimension, the large range of travel time elasticities (-0.27 to -1.33) is not surprising. However, an equally 
large range of toll elasticities (-0.02 to -1) require explanation. 

Toll elasticity factors in Table III include both fixed- and variable-rate tolls. The cause of the large range in 
elasticities is revealed in Table IV, which presents elasticities by type of toll. The much higher average price 
elasticity for variable tolls reflects the general understanding that the more flexible travel choices are to the traveler, 
the higher elasticities are prone to be (Washbrook et. al. 2006, Burris 2003, Hirchman et. al. 1995). In this regard, 
variable tolls offer travelers additional flexibility in travel decisions unavailable in most fixed-rate facilities, notably 
time shifting of trips or changing routes to avoid tolls, as well as toll-free incentives for carpooling. However, the 



large range of elasticities in Table IV (-0.02 to -1) suggests that not all variable-rate tolled facilities exhibit high 
elasticities. For example, a bridge crossing in Lee County, Florida, employs toll pricing that is variable by time of 
day, and yet achieved a price elasticity of only 13%. This relatively inelastic effect on traffic demand is due to a 
small savings in cost (average of 25 cents), tolerable existing congestion, poor transit options, inconvenient free 
alternate crossings, as well as the lack of a toll-free carpool crossing option. Due to these factors, travelers found the 
high toll price to be rational despite the additional flexibility offered by variable-rate tolling. 

Table IV: Typical Toll Elasticity of Travel Demand by Type of Toll 
Elasticity Type of 

Toll Range Average 

Fixed -0.03 to -0.35 -0.18 

Variable -0.02 to -1 -0.45 
    Source: Burris 2003 

Elasticity studies from other regions also corroborate the effectiveness of offering flexible travel choices. 
Based on stated-preference data, the Vancouver mode choice model offered respondents a full range of hypothetical 
mode choice alternatives to SOV travel. The resulting high elasticities of 31% to 46% across household income 
segments for a 10% increase in toll reflect significant mode shift due to hypothetically improved bus transit times as 
well as new carpool services. Likewise, the comprehensive FLDOTTE mode choice model accounts for a broad 
range of mode choices, data sources, as well as planes of analysis, including time of day, trip purpose, and route 
choice (via model feedback). As a result, reported elasticities based on a doubling of existing tolls are relatively 
high: 30-33% for peak periods and 36%-43% for non-peak. This finding also suggests that peak toll users are less 
sensitive to changes in toll rates due to a higher value of time during periods of high traffic demand (Dehghani, et. 
al. 2003).  

On the other hand, a study of price elasticity of traffic demand yielded elasticities of only 7% to 20% for 
six out of eight fixed-toll bridges and tunnels in New York City. This scenario reflects a lack of convenient free 
alternative crossings (Hirchman et. al. 1995). However, elasticities for the two remaining bridges in the NYC 
region—the Henry Hudson Bridge and Brooklyn Battery Tunnel—were found to be relatively high, 50% and 26% 
respectively. Hirchman (et. al. 1995) attributes this to well-developed mass transit options for Manhattan-bound 
Brooklyn and Bronx residents, as well as the availability of free alternate crossings—the Brooklyn, Manhattan and 
Williamsburg bridges, as well as other free city-owned crossings of the Harlem River—that travelers may 
conveniently choose to avoid tolls. 
 
Mode Shift 

When changes in the transportation environment affect factors of influence in a traveler’s decision-making 
process, elasticities of mode choice are formed in the logit model. The affected modes’ share of travelers will 
decrease, resulting in a rebalancing of the percentages of travelers that choose each mode. This effectively estimates 
contingent mode shift dynamics that may occur as a result of planned or anticipated changes in the transportation 
environment. In the Vancouver stated-preference mode choice model, potential mode shift dynamics due to an 
increase in road charges were estimated by first establishing a baseline mode split scenario, then comparing it to a 
hypothetical scenario in which increased tolls and parking costs were implemented alongside much improved transit 
modes and toll-free carpool incentives (Washbrook et. al. 2006). With a moderate $2 total increase in driving costs, 
it was estimated that the share of SOV travelers would decrease from 83% to 75%, while an extreme $18 increase 
would result in a mode split of 17% SOV, 74% carpool and 9% transit.  

Naturally, results of this kind are of utmost interest to transportation planners and policy makers who seek 
to apply conclusions from mode choice studies elsewhere to their constituent regions. However, conclusions drawn 
from mode choice modeling with regard to highly aggregate dynamics, such as mode shift, are potentially the most 
inapplicable between different regions. Washbrook (et. al. 2006) concedes that their findings from mode choice 
modeling are dependent on a specific range of choices potentially available to travelers in the Vancouver region. By 
definition, mode choice models factor in all the disaggregate characteristics of the population and transportation 
environment captured for a region of study, yielding highly aggregate findings such as toll elasticities and mode 
shift dynamics. It is therefore arguable that these aggregate conclusions may be unique, given that travelers’ 
perception of even basic attributes of travel may differ between regions (e.g., values of time). Thus, the generality of 
modeling results involving aggregated estimates may be severely limited (Train 1980, Washbrook et. al. 2006, 
Burris 2003, Hirchman et. al. 1995). 
 
Summary – Implications for a New Toll Roadway 



Predicting the response of traveler behavior to a new toll roadway falls within the standard methodology of 
logit modeling assessed in this study. Predicting the overall impact of a new toll roadway requires the development 
of a discrete mode choice model encompassing existing factors identified in the study region which influence 
travelers’ decision-making processes. This approach involves capturing explanatory variables in the logit form along 
four basic dimensions of analysis—socioeconomic, travel cost, temporal, and categorical—that adequately represent 
potential travelers’ orientation within and relationships with the existing transportation environment. Integrating 
additional planes of analysis—such as time of day and trip purpose—into the logit structure would also improve a 
model’s ability to accurately capture existing conditions as well as analyze the impact of proposed changes to the 
transportation environment. 

While the actual selection of explanatory variables relevant to a project may be constrained by the focus 
and scope of the proposed changes under study, the collection of data with which to populate and calibrate a mode 
choice model must be structured to fit the type and purpose of the project. A new toll roadway does not offer 
travelers a new mode of travel, but rather offers an alternative that serves to improve mobility of travel and 
accessibility between origin and destination. To the traveler, this represents a trade-off decision that weighs potential 
travel time savings against a higher cost of travel for automobile modes, as well as concurrent comparison against 
the utility of other modes such as transit. In this scenario, the ideal mode choice model must capture both the 
existing travel conditions in the area (e.g., congestion, transit options) as well as the utility that travelers are likely to 
place on the new route choice. The former requires the collection of revealed data on actual trips made by travelers 
in the region of study, thereby producing crucial statistical and categorical information for journeys of particular 
interest to the project. Ideally, assessing the potential utility of an additional alternative choice suggests the use of 
stated-preference surveys, through which the mode choice model may systematically reflect a traveler’s trade-off 
decision process that weighs various factors based on a hypothetical scenario implied by the proposed travel 
improvements (e.g., reduced auto in-vehicle time, higher cost of travel due to tolls). Observed data may also play a 
crucial role by corroborating and tempering both revealed and stated-preference data by independent observations of 
related travel conditions (e.g., level of service/congestion, travel speeds, traffic volumes). Furthermore, since the 
mode choice model must take into account the impact of a new route choice on travel times, observed data may be 
used to estimate potential time savings for travelers choosing to take the new toll roadway. 

Once a mode choice model is calibrated to reflect real-world conditions, it may be used to analyze the 
impact of proposed changes to the transportation environment. In addition to estimating the efficacy of a new toll 
roadway in the regional network, the feasibility and effectiveness of operational decisions such as the 
implementation of variable toll pricing or traffic demand management schemes (e.g., HOT lanes) can be directly 
measured and simulated. Crucial statistics such as elasticities and mode split also emerge from mode choice 
modeling, giving planners and policy makers a powerful tool with which to effectively manage the present and 
future transportation environment.  
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